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NOTICE 

This report was prepared by US Forest Service Northern Research Station in the course of performing work 

contracted for and sponsored by the New York State Energy Research and Development Authority (hereafter 

"NYSERDA"). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of 

New York, and reference to any specific product, service, process, or method does not constitute an implied or 

expressed recommendation or endorsement of it. Further, NYSERDA, the State of New York, and the contractor 

make no warranties or representations, expressed or implied, as to the fitness for particular purpose or 

merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, 

methods, or other information contained, described, disclosed, or referred to in this report. NYSERDA, the State of 

New York, and the contractor make no representation that the use of any product, apparatus, process, method, or 

other information will not infringe privately owned rights and will assume no liability for any loss, injury, or 

damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or 

referred to in this report. 
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ABSTRACT AND KEYWORDS 

The overall goal of this project has been the development of forest health and sensitivity indicators and 

baseline  maps of potential sensitivity to disturbance for lands within watersheds of the NYC water supply 

in the Catskill Mountains of New York. The methodologies and data layers created in this effort can now 

be used to aid management decisions and help determine the extent and magnitude of terrestrial and aquatic 

responses to acidic deposition. The data products derived from this effort have been produced and 

documented  in such a manner that stakeholders can now use these products for site evaluation as well as to 

perform more extensive analysis on the suite of readily available geographic information system (GIS) and 

image-based data products.  

The value of a spatially explicit dataset such as this one lies in the ability to test a wide variety of 

hypotheses or ask specific management related questions of the data and have the answer mapped across 

700,000 acres in the Catskills. In this report we take a case study approach to illustrate this flexibility. We 

discuss three case studies that ask questions ranging from the highly practical “Where is sugar maple most 

susceptible to decline?”; to “Can we predict and map a key streamwater acidification index without 

sampling a stream?”; and finally we create a theoretical index  of “ecosystem health” using streamwater, 

soil, and foliar chemistry, forest stress, and nitrogen deposition.  Ultimately we hope to see this tool 

deployed on the web, allowing land managers and scientists to design their own queries based upon criteria 

and thresholds that are important to them. 

 
The project will facilitate future assessments of forest condition and the creation of more detailed forest 

sensitivity maps to be made at reduced expense.   

 
Keywords: Nitrogen, calcium, remote sensing, AVIRIS, stream water, nitrogen deposition, foliar 

chemistry, species classification. 
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SUMMARY 

The overall goal of this project has been the development of forest stress and sensitivity indicators and 

baseline maps of potential sensitivity to disturbance for lands within watersheds of the NYC water supply 

in the Catskill Mountains of New York. The methodologies and data layers created in this effort can now 

be used to aid management decisions and help determine the extent and magnitude of terrestrial and aquatic 

responses to acidic deposition. The data products derived from this effort have been produced and 

documented  in such a manner that stakeholders can now use these products for site evaluation as well as to 

perform more extensive analysis on the suite of readily available GIS and image-based data products.  

The value of a spatially explicit dataset such as this one lies in the ability to test a wide variety of 

hypotheses or ask specific management related questions of the data and have the answer mapped across 

700,000 acres in the Catskills. In this report we take a case study approach to illustrate this flexibility. We 

discuss three case studies that ask questions ranging from the highly practical “Where is sugar maple most 

susceptible to decline?”; to “Can we predict and map a key streamwater acidification index without 

sampling a stream?”; and finally we create a theoretical index  of “ecosystem sensitivity” using 

streamwater, soil, and foliar chemistry, forest stress, and nitrogen deposition.  Ultimately we hope to see 

this tool deployed on the web allowing land managers and scientists to design their own queries based upon 

criteria and thresholds that are important to them. 

This project will facilitate future assessments of forest condition and the creation of more detailed forest 

sensitivity maps to be made at reduced expense.   
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Figure 1.  687,000 acre study area in the Catskill Mountains. 

Section 1 
 

INTRODUCTION 

 
The overall goal of this project has been to develop forest stress and sensitivity indicators and “baseline 

maps of potential sensitivity to disturbance for lands within watersheds of the NYC water supply in the 

Catskill Mountains of New York (Figure 1). The methodologies and data layers created in this effort can 

now be used to aid management decisions and help determine the extent and magnitude of terrestrial and 

aquatic responses to acidic deposition. 

The data products derived from this 

effort have been produced and 

documented in such a manner that 

stakeholders can now use these products 

for site evaluation as well as to perform 

more extensive analysis on the suite of 

GIS and image-based data products. The 

project will allow future assessments of 

forest condition and more detailed forest 

sensitivity maps to be made at reduced 

expense.   

Collaboration between the US Geological Survey (USGS) and the US Forest Service (USFS) has linked 

field and remote sensing data to produce maps of forest, soil, and surface-water condition in the Catskill 

Mountain region of New York State.  The resulting GIS database highlights forest stands and watersheds 

sensitive to changes in atmospheric deposition and land use in the Catskill Mountain region. During this 

collaboration, the USGS and USFS have expanded their capabilities for the development of remote-sensing 

methods for forest cover and condition making it possible to use the current data analysis as a baseline in 

assessing future changes in forest health (tree decline) throughout this region at a more detailed resolution 

than possible through field assessments. The results presented here begin to show the patterns of landscape 

sensitivity to disturbance (e.g. acid deposition, insect defoliation, logging) within the region, as well as the 

spatial variability in potential forest and surface water response to decreased or increased levels of acidic 

deposition and disturbance for the Catskill watersheds. 

Ultimately the real value of this project lies in the layering of spatially explicit data, covering a large 

portion of the Catskills, focusing on important parts of the forested ecosystem and the capability for land 

managers, environmental conservation groups and scientists to design and ask their own questions, include 

or exclude variables and set thresholds based on interests and/or expertise. In this report we present a set of 

static results based upon our own assumptions and questions designed to show the flexibility and utility of 

this data set.
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Layer Source Notes

Foliar Ca Derived from AVIRIS imagery
Foliar N Derived from AVIRIS imagery
Forest Health Derived from Landsat imagery
Red Oak Derived from AVIRIS imagery Percent basal area
Hemlock Derived from AVIRIS imagery Percent basal area
Sugar Maple Derived from AVIRIS imagery Percent basal area

ANC Interpolated from sample points
Base Cation Surplus Interpolated from sample points
Ca Interpolated from sample points
Mg Interpolated from sample points
Nitrate Interpolated from sample points
pH Interpolated from sample points
DOC Interpolated from sample points

Base Saturation Inerpolated from sample pits
Available Ca Inerpolated from sample pits
Available Mg Inerpolated from sample pits
pH Inerpolated from sample pits

Forest Canopy

Streams

Soils

 

Table 1. Data layers derived for this project. 

Section 2 
 

DATA LAYER CREATION 

 

This section discusses the status/quality of the deliverable GIS and image data products. The deliverable 

data discussed below are provided as spatially explicit data coverages in either raster grid files or vector 

point/line/polygon files, bundled into a single ARC Project (Table 1) using ArcGIS, Version 9.0 

(Environmental Systems Research Institute, Inc., Redlands, CA). These files have been documented with 

Federal Geographic Data Committee (FGDC) style metadata files, which contain more information on data 

source/processing/availability than the summary below. These metadata files are attached to the relevant 

raster and/or vector data coverages in the accompanying ARC Project. In addition to the delivery of these 

data in the ARC Project format, coverages can be made available via ftp, or a web mapping interface, as 

well as Web Mapping Service (WMS), which allows for viewing through non-GIS interfaces (i.e. 

GoogleEarth). The ARC Project suite of data allows for continued analysis and investigation, however we 

anticipate that there may be an interest in viewing and/or downloading individual components, which can 

be done through our current web mapping capabilities. Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) imagery is not included with this report, but is a non-proprietary data product which we are free 

to redistribute to interested parties. We do not include the AVIRIS data here, since data requirements may 

differ by user. Nevertheless, we can provide the data on request. Contact information for data requests are 

included in the metadata files. 
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REMOTE SENSING DATA 

An AVIRIS scene collected in 2001 over 300,000 ha of the Catskill region was used as the primary 

hyperspectral dataset in this project. The AVIRIS 2001 scene was collected during an Earth Observing-1 

(EO-1) Hyperion Science Validation campaign, at which time we also collected extensive foliar chemistry 

data. The data from this earlier study were processed further to allow us to develop a better and more 

extensive foliar chemistry image product for this project.  For each pixel in the AVIRIS imagery, we were 

able to estimate percent foliar nitrogen (N(%)) and parts per million Calcium (Ca) (ppm), using a partial 

least square regression calibration relating field measured foliar chemistry to AVIRIS reflectance spectra 

(Martin et al., 2008; Smith et al., 2003). Details on the pre-processing of the AVIRIS data (calibration, 

atmospheric correction, georegistration), and image calibration equations and statistics are contained in the 

metadata file. Calibration statistics are shown in Table 2, and Figures 2 and 3 are the resulting foliar N and 

Ca maps.  

 

Table 2. AVIRIS Calibration for canopy-level foliar chemistry. 

 

Number Mean (stdev)
Math 

Treatment SEC R 2̂ SECV 1-VR
Nitrogen 41 2.225 (0.265) 1,2,1,1 0.057 0.954 0.185 0.525
Calcium 40 6136 (2168) 1,2,2,1 886 0.833 1944 0.217

 

Statistics on dataset composition and results of partial least square regression calibration.  Math treatment is 

specified as [derivative, gap, smooth, smooth], where derivative is the difference between bands separated 

by the specified gap, with the resulting spectra being the slope of the reflectance spectra. The standard error 

of calibration (SEC), coefficient of determination (R2), standard error of cross-validation (SECV) and 1-

VR (1 minus the ratio of unexplained variance to total variance) are used to characterize equation 

performance. Cross validation is the prediction on samples not included in the calibration through an 

iterative leave-one-out, or jackknife technique. 
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Figure 2. Derived map of Foliar N (%) in the forest canopy. Gaps in the coverage are either 
non-forested areas or areas where clouds obscured the ground when the imagery was 
collected. 

Figure 3. Map of derived foliar Ca (ppm) in the forest canopy. Gaps in the coverage are either 
non-forested areas or areas where clouds obscured the ground when the imagery was 
collected. 



2-4 

GROUND CALIBRATION DATA 

During the 2006 and 2007 field season, we established and 

sampled a network of field plots throughout the Catskills 

region. These plots were located on New York Department of 

Environmental Protection (NYDEP) and New York 

Department of Environmental Conservation (NYDEC)  

property, and were selected to cover a range of species, 

health, and site conditions. In addition to basic plot 

characteristics (plot location, tree positions, basal area), plot 

health was assessed by common vegetation stress symptoms, including vigor class, transparency, dieback 

and live crown ratio, as well as incipient stress indicators such as chlorophyll fluorescence indices. All of 

these field measured variables were normalized by quantiles and averaged to produce the one summary 

forest stress value predicted in these images (Table 3). For more detail on field sampling methods, see 

Pontius et al. (2005; 2008). 

 

MAPPING VEGETATION STRESS 

Based on an evaluation of available image data for the production of a Catskills-wide forest stress map, we 

decided to use a Landsat image that was more temporally coincident with our field health measurements 

than the AVIRIS imagery. Landsat 5 Thematic Mapper (TM), level 1T orthorectified imagery from July 16, 

2006 was ordered from the USGS (http://edc.usgs.gov/products/satellite/tm.html) for path 14 row 21, 

covering the entire study area (Figure 1).  The Level 1T Landsat product  includes radiometric, geographic 

and topographic corrections.  No further processing was done on this imagery prior to the development of 

the calibration. 

To determine the best spectral indices to determine stress, we created a database calculating a Landsat 

equivalent to all of the known narrow-band indices that have a known sensitivity to vegetation stress. If for 

example, the chlorophyll b sensitive index proposed by Datt (1998) calls for (R672nm / R550nm), we 

calculate a broad band equivalent as Landsat TM5 (Band3 / Band2).  By calculating 89 known stress 

sensitive indices from the wealth of hyperspectral and multi-spectral literature, we then used a stepwise 

linear regression to identify those indices that best predict forest condition on over 46 calibration plots in 

the Catskills of New York with a range of species composition, health status and topographic position. 

While many of the stress indices were significantly correlated with forest stress, the mixed-stepwise linear 

regression was limited to a maximum of three terms (for an N of 46), with set limits to enter at 0.05 and to 

leave at 0.01 to avoid over-fitting (Williams and Norris 2001). The mixed platform tests all possible linear 

regressions combinations and reports the set producing the lowest standard error of calibration.  Variables 

are entered in the order of greatest significance and retained only if they remain significant as additional 

0-1 Perfect Health
2 Healthy
3 Pre-Visual Decline
4 Early Decline
5 Early/Moderate Decline
6 Moderate Decline
7 Moderate/Severe Decline
8 Severe Decline
9 Death Imminent
10 Dead

Table 3. Forest Stress Classes 

http://edc.usgs.gov/products/satellite/tm.html�
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N = 46
Terms = 3
R-square = 0.44
RMSE = 0.54
Avg Jacknifed Residual: 0.55
Class Accuracy = 57%
Within 1 Class Accuracy = 98%

Decline = 2.28 + (0.003 * B6) + (26.5 * B3/B4) - (32.5 * ((B5/B4)*(B3/B4))

Figure 4. Equation and validation statistics for 
predicting forest stress. 

variables are added.  In order to limit autocorrelation, variables were retained in the final model only if the 

variance inflation factor was below twenty (Kleinbaum et al., 1998).  This ensures stability when the 

equation is applied to independent data sets.  Jackknifed residuals calculated from the predicted residual 

sums of squares (PRESS) statistic were also used to assess the stability of the final predictive equation as a 

measure of independent validation accuracy (Kozak and Kozak, 2003).  

The final best-fit model included primarily 

chlorophyll and canopy water content sensitive 

indices. Validation of the continuous forest stress 

prediction resulted in an r-square of 0.44 and root 

mean square error (RMSE) of 0.54. An average 

jackknifed residual error (0.55 compared to 

RMSE = 0.54) indicates that we could expect this 

model to perform similarly on an independent data 

set. When the continuous forest stress rating is 

rounded to the nearest integer for class 

comparison, the model was able to predict forest 

stress levels for the calibration data with 57% 

accuracy (10-class system) and an accuracy of 100% to within one class (Figure 4).  

This equation was applied to the Landsat image (Figure 5), with the values expressed in this coverage  

representing an assessment of overall vegetation stress on  a 0 to 10 continuous scale, where 0 is a perfectly 

healthy vegetated pixel and 10 is a completely dead vegetated pixel.  In order to minimize the inclusion of 

non-forested pixels, all values greater than 9 (the point at which there is minimal foliage left on a tree and 

understory occupies almost all the spectral signature) and all values less than 0 have been masked out.  

These extreme values successfully remove all developed pixels (i.e. roads, buildings, etc).  Nevertheless, 

they still include pixels occupied by shrubs, vegetated wetlands, fields and agriculture. These non-forested, 

but still vegetated pixels are typically classified between the ranges of 7-9 since they often resemble the 

mix of bare ground and herbaceous understory seen in declining stands.  
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Applied on a pixel by pixel basis, the equation calculates a “stress” value for each pixel regardless of its 

composition.  Therefore, these coverages cannot be considered “stand alone” assessments of 

forest condition.  Please keep in mind that this stress prediction is not stressor, or species specific.  It 

simply describes the range of vegetative health (as characterized by leaf water content, chlorophyll 

condition and function) across the landscape.  

SPECIES MAPPING  

Spectral mixture analysis (SMA; Boardman 1994, Boardman et al. 1995) , with a potential advantage of 

delineating sub-pixel composition, was selected as the method of analysis for this project.  This approach is 

particularly useful for coarser spatial resolution imagery where spectra for a given pixel are characterized 

by a mix of constituents on the ground (Plourde et al. 2007). 

The SMA approach begins with a minimum noise fraction (MNF) transform. Similar to principal 

components transform, MNF transform (Green et al. 1988, Boardman & Kruse 1994, Bhargava et al. 2000) 

reduces the dimensionality of hyperspectral reflectance data by reprojecting the data onto vectors that 

account for the most variability in the spectra, but also includes an additional step that segregates noise 

from data. In the resulting  n-dimensional image,  the first few bands include the most information and the 

latter bands include progressively more noise. After masking pixels that represented non-vegetation (e.g., 

clouds, bare soil, impervious surfaces, water) from the imagery, we performed MNF transforms. Only the 

first 20 bands from the MNF transforms were used in subsequent spectral unmixing classification steps.  

Health Plot

Forest Health Class
3

4

5

6

Figure 5. Predicted forest stress map. Lower numbers represent better health. 
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Of the plots available for the study area, only the most pure samples of each respective species were used 

as spectral endmembers for SMA image calibration. Endmember spectra were extracted from images for 

each region by averaging the spectra from the four pixels closest to plot center. In addition, plot data made 

available through a Memorandum of Understanding with the USDA Forest Service, Forest Inventory and 

Analysis Program, Northern Research Station allowed us to augment our species spectral endmember 

dataset. Specifically, spectra from forest inventory and analysis (FIA) plots dominated by sugar maple, 

hemlock, and oak were extracted from an existing hyperspectral dataset from a prior study in New 

Hampshire, related to the Catskills image 

dataset and added to the endmember 

spectral library for species classification. 

Once endmembers were identified in 

each image, SMA was performed with 

the mixture-tuned matched filtering 

algorithm in ENVI (v. 4.2) image 

processing software. Mixture-tuned 

matched filtering (MTMF; Boardman 

1998) detects abundances of user-

defined endmembers by “unmixing” the 

pixels from “background” material. 

MTMF maximizes the response of the 

endmember in the MNF image and 

suppresses the background, thus 

“matching” the known signature. This 

unmixing process produced a multiple 

band image for each region, where each 

pixel was assigned a matched filter score 

and an infeasibility. The matched filter 

score represents how well the pixel 

spectra match the endmember (e.g., a 

value between 0 and 1.00, where 1.00 

represents a perfect match with the 

endmember), and the accompanying 

infeasibility score can be used to reduce 

the number of false positives. Optimum 

MTMF results are pixels with high 

matched filter scores and low 

infeasibility scores. A stepwise linear 

Table 4.  Accuracy assessment for species fraction 
classification.  Diagonal outlined cells are those instances 
where the MTMF method characterized the plot within one 
class of the actual field-measured species fraction based on 
basal area measurements. 
Species Fraction Reference total
ACSA 0 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 >90

50 4 1
1-10 10 3 1 14
11-20 1 1 1 1 4
21-30 2 1 1 4

i
de 31-40 1 1 2 1 5

sif 41-50 2 2 4

Cl
as 51-60 1 1

61-70 1 1 2
71-80  
81-90  
>90  

16 7 3 3 2 4 4 39total
 

ASCA within-one-class accuracy: 0.74  
 

QURU 0 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 >90  
0 16 16
1-10 8 2 1 1 12
11-20 8 8
21-30 1 1

i
de 31-40  

41-50 1 1

Cl
as

sif

51-60  
61-70 1 1
71-80  
81-90  
>90  

33 2 1 1 1 1 39total
 

QURU within-one-class accuracy: 0.72  
 

TSCA 0 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 >90  
40 4

1-10  
11-20 2 1 3
21-30 3 1 4

i
de 31-40 1 1 1 3

41-50 1 1 1 3

Cl
as

sif

51-60 1 1 1 1 1 1 1 7
61-70 2 1 1 2 6
71-80 1 1 1 1 1 5
81-90 1 1
>90 1 1 1 3

12 1 1 2 1 3 5 4 4 6 39total

TSCA within-one-class accuracy: 0.46
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regression was performed using JMP on the 

MTMF results to determine the optimum 

combination of matched filter and infeasibility 

scores for predicting sugar maple, oak and 

hemlock, using field-measured basal area data for 

validation. The resulting data product for this 

project is a series of three raster coverages, one 

for each species, represented as fraction of 

species per pixel on a scale of 0-100 (see sugar 

maple map Figure 7). 

Accuracy statistics for the species maps are 

shown in Table 4. Measured vs. MTMF species 

fraction is shown in Figure 6.   
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SURFACE WATER 

Stream water samples were collected during spring sustained high flows each year from 2002 to 2006, and 

during fall sustained moderate to high flows during the years 2002, 2004, and 2006.  The number of 

streams sampled ranged approximately from 150 to 200.  The sampled streams were primarily first order 

streams that drained basins with over 90 percent forest cover selected randomly to cover the study area.  

Samples were collected in 500 ml polyethylene bottles and stored on ice until return to the laboratory.  The 

samples were analyzed by ion chromatography for chloride (Cl-), sulfate (SO4
2-) and nitrate (NO3

-) by 

inductively coupled plasma-emission spectrometry for Ca2+, magnesium (Mg2+), silicon dioxide (SiO2) and 

total aluminum (Altot) by flow injection analysis for total monomeric aluminum (Almono) and organic 

monomeric aluminum (Alorg), by electrode for pH, by a Gran titration for acid neutralizing capacity (ANC) 

and by ultraviolet oxidation and persulfate oxidation for dissolved organic carbon (DOC) according to 

methods described in Lawrence et al (1995).  Inorganic monomeric aluminum (Alim), the fraction that can 

be toxic to aquatic biota in high concentrations, was calculated by subtracting Alorg from Almono. 

A watershed boundary polygon coverage corresponding to 99 stream sampling locations that were sampled 

in the spring of each year (2002-2006), was also developed, and is used in the final data analysis where we 

extract descriptive statistics from the corresponding data products to determine that factors influence stream 

chemistry. 

 
SOIL  

Soil samples were collected from more than 240 forested sites from 2000 to 2006.  The samples were 

collected using a soil knife or similar instrument from the clean wall of hand dug pits from the organic 

horizon and 0 to 10 cm of the B horizon, and placed into sealed plastic sample bags for transport to the 

laboratory.  Additional samples were collected from deeper sections of the B horizon in selected pits.  Soil 

samples were analyzed for exchangeable acidity, exchangeable aluminum, exchangeable hydrogen, and the 

percent aluminum acidity by potassium chloride vacuum extraction and titration (Thomas, 1982), 

exchangeable bases by ammonium chloride vacuum extraction (Blume et al, 1990), calcium, magnesium 

potassium and sodium concentrations by inductively coupled plasma-emission spectrometry (Lawrence et 

al, 1995), and pH by electrode (Blume et al, 1990).  Soil moisture was determined by the difference of pre 

and post oven-drying weights; the mineral and organic soils are heated for 24 hours at 110° C and 65° C 

respectively (Blume et al, 1990). Loss on ignition was calculated by measuring the difference in weight of 

oven dried soils pre and post complete burning in a muffle furnace at 450°C for 24 hours for both mineral 

and organic soils. 
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DATA ANALYSIS  

Interpolated maps of stream chemistry ( nitrate example shown in Figure 8) and soil chemistry ( O horizon 

exchangeable Ca example shown in Figure 9) were created using the kriging method in the ArcGIS 

geostatistical analyst at a 50 meter grid cell size.  Ordinary kriging with a spherical model was used with 

input parameters adjusted to better fit the variogram to the data.  The stream survey data were split into fall 

and spring datasets, and then means were calculated for each chemical property for each dataset.   For soil 

sites with multiple pits per plot, the mean value for the pits at a given site was calculated for each chemical 

property for each soil depth sampled.  The mean values were then used in the interpolation. 

  

Figure 8. Interpolated map of stream water nitrate from the spring sample periods.  Sample 
watersheds are delineated on the map. 
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Figure 9. Interpolated map of O horizon exchangeable Ca. Soil sample locations are delineated on the 
map. 
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Section 3 
 

DATA SYNTHESIS 

 
The data products developed in the preceding sections were used in the final data synthesis. Within an ARC 

project, the data was summarized and extracted on two levels. The first analysis dataset was derived by 

using a point grid overlay to extract underlying data in shape files and image data products. These data 

were investigated for relationships between soil, streamwater, foliar chemistry, nitrogen deposition and 

elevation. In a second data analysis approach, data was summarized on the basis of the sample watershed 

boundaries, allowing the evaluation of soil and foliar chemistry, and species composition with regard to 

streamwater chemistry. 

The value of a spatially explicit dataset such as this lies in the ability to test a wide variety of hypotheses, or 

ask specific management related questions of the data and have the answer mapped across 700,000 acres in 

the Catskills. For this final section of the report we take a case study approach to illustrate this flexibility. 

We discuss three case studies that ask questions ranging from the highly practical “Where is sugar maple 

most susceptible to decline?”; to “Can we predict and map a key streamwater acidification index without 

sampling a stream?”; and finally we create a theoretical index  of “ecosystem health” using streamwater, 

soil, and foliar chemistry, forest stress, and nitrogen deposition.  Ultimately we hope to see this tool 

deployed on the web, allowing land managers and scientists to design their own queries based upon criteria 

and thresholds that are important to them. 

Every map contains errors and these maps are no exception. Wherever possible we have provided some 

estimate of the accuracy of our predictions using statistics and/or error matrices. When using techniques 

such as kriging, as we did for the soil and stream water chemistry maps it becomes more difficult to 

describe an error term for a given map as it is highly dependent on the size of the area for which you are 

trying to derive a number. The same is true as we begin to combine maps to answer questions about large 

areas of the landscape. Errors or inaccuracies can propagate and/or cancel each other out as each data layer 

is added to the model.  

For the case studies that follow, quantifying the error in the final maps represents an opportunity for further 

study. In fact case study 2 is the only one that could be validated now as it does not predict a future 

outcome. Aside from statistical accuracy of maps such as these, there is what we are calling “Functional 

Accuracy,” which is a representation of the practical value of the map to the person using it. Obviously the 

functional accuracy of the map may change with the user’s goals. Again, designing a way to quantify 

functional accuracy is a topic for further study and would involve input from users asking specific 

management questions. 

  

A note regarding accuracy 
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CASE STUDY 1: SUGAR MAPLE SUSCEPTIBILITY TO DECLINE. 

Sugar maple (Acer saccharum) health and growth in the northeastern and Lake States of the United States 

and eastern Canada are threatened by multiple factors including disturbance from insect defoliators that 

have incited periodic declines with accelerated mortality (Gross 1991, Kolb and McCormick 1993, Payette 

et al. 1996, Horsley et al. 2002).   Predisposing stresses include nutrient imbalances that are frequently 

implicated in sugar maple declines (Mader and Thompson 1969, Bernier and Brazeau 1988, Bernier et al. 

1989), while decreased basal area increment (BAI) has been associated with increased soil acidity 

(Duchesne et al. 2002).  Insect defoliation, drought, late spring frosts, and midwinter freeze-thaw cycles 

frequently have been associated with sugar maple decline (Houston 1999, Horsley et al. 2002).  Secondary 

organisms such as Armillaria fungi serve as mortality agents.  Studies conducted in 76 stands in northern 

Pennsylvania, New York, Vermont and New Hampshire identified foliar nutrient (Ca >5500 mg kg-1, Mg > 

700 mg kg-1, and Mn < 1900 mg kg-1) and soil thresholds (Ca > 0.2 cmolc  kg-1 Mg > 0.05 cmolc kg-1, Ca:Al 

molar ratio < 0.03) that enable trees to withstand stresses associated with defoliation and drought, while 

maintaining healthy crown vigor (Horsley et al. 2000, Bailey et al. 2004, Hallett et al. 2006). 

In the Catskills sugar maple decline disease is not a widespread problem, however the region has been 

impacted by many of the stressors mentioned in the paragraph above. The literature indicates that sugar 

maple trees with foliar Ca below a threshold of 5500 mg kg-1 are more likely to decline when stressed and 

will have lower growth rates (Long et al., 2009). Let’s assume that a land manager would like to assess 

areas across the landscape for sugar maple decline and that they are only interested in areas with greater 

than 30% sugar maple basal area (Figure 10, areas mapped in light green). We can further reduce the area 

to be surveyed by applying our foliar calcium threshold to the new map (using the foliar Ca coverage, 

Figure 3) resulting in a map showing areas of sugar maple that are predicted to be most susceptible to 

decline (Figure 10, areas mapped in red). Further parsing of the map can be accomplished by overlaying 

state land ownership boundaries and focusing on areas only within those boundaries (not shown here but 

available in the ARC project).  
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Figure 10. Light green areas are where sugar maple abundance is over 30% basal area. Red areas 
meet the sugar maple abundance criteria and have foliar Ca below the threshold value of 5500 
ppm. 
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CASE STUDY 2: PREDICTING BASE CATION SURPLUS 

The spatially explicit nature of the datasets 

in this project allows us to examine 

relationships between variables, such as the 

streamwater chemistry coming out of a 

watershed, and relate it to a host of other 

environmental variables from within that 

watershed. We delineated a watershed for 

every stream sampling point (see delineated 

watersheds in Figure 8) and used GIS tools 

to extract and average values from each 

watershed. This allowed us to match 

watershed soil chemistry, foliar chemistry, 

species composition and nitrogen deposition 

data to the stream chemistry variables.  

Base cation surplus (BCS) is a recently developed indicator for measuring stream acidification (Lawrence et 

al., 2007). A BCS value of less than 0 in streamwater indicates that the soil has become sufficiently acidified 

by acid rain to enable toxic forms of aluminum to move from the soil to the stream. Stream BCS has been 

related to the health and diversity of macro invertebrate communities in streams of the Adirondacks (Baldigo 

et al., 2009). A spatially contiguous map of BCS across the study area could help focus management efforts 

on those areas that had the highest potential to have a negative impact on water quality.  

We conducted a stepwise linear regression analysis to predict BCS across the study area using only non-

aquatic dependent variables. Our predictive equation had an R2 of 0.59 (Figure 11). The equation used 

species composition, foliar chemistry, and soil chemistry variables to predict BCS (Equation 1). 

Equation 1. Regression equation for predicting base cation surplus in stream water. 

 𝐵𝐵𝐵𝐵𝐵𝐵 =  −400.002 + (−0.76308 ∗ % 𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵𝑆𝑆𝐵𝐵𝑆𝑆𝑀𝑀 𝐴𝐴𝑆𝑆𝑀𝑀𝑆𝑆)

+  (−.59547 ∗  % 𝐻𝐻𝑀𝑀𝐻𝐻𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻 𝐵𝐵𝑆𝑆𝐵𝐵𝑆𝑆𝑀𝑀 𝐴𝐴𝑆𝑆𝑀𝑀𝑆𝑆) + (0.0575 ∗ 𝐹𝐹𝐻𝐻𝑀𝑀𝐹𝐹𝑆𝑆𝑆𝑆 𝐵𝐵𝑆𝑆)

+  (315.643 ∗ 𝑂𝑂 ℎ𝐻𝐻𝑆𝑆𝐹𝐹𝑜𝑜𝐻𝐻𝑜𝑜 𝐵𝐵𝑆𝑆𝐵𝐵𝑀𝑀 𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐻𝐻𝑜𝑜) +  (−35.6328 ∗ 𝑂𝑂 ℎ𝐻𝐻𝑆𝑆𝐹𝐹𝑜𝑜𝐻𝐻𝑜𝑜 𝐸𝐸𝐸𝐸𝐻𝐻ℎ.𝑀𝑀𝑆𝑆)

+  (−136.895 ∗ 𝐵𝐵 ℎ𝐻𝐻𝑆𝑆𝐹𝐹𝑜𝑜𝐻𝐻𝑜𝑜 𝐵𝐵𝑆𝑆𝐵𝐵𝑀𝑀 𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐻𝐻𝑜𝑜) +  (135.051 ∗ 𝐵𝐵 ℎ𝐻𝐻𝑆𝑆𝐹𝐹𝑜𝑜𝐻𝐻𝑜𝑜 𝐸𝐸𝐸𝐸𝐻𝐻ℎ.𝑀𝑀𝑆𝑆)

+  (83.008 ∗ 𝐵𝐵 ℎ𝐻𝐻𝑆𝑆𝐹𝐹𝑜𝑜𝐻𝐻𝑜𝑜 𝑀𝑀𝐻𝐻) 

We applied this equation to the study area in our ARC project and computed a BCS value for every pixel in 

the study area (Figure 12). Obviously there is not a stream running through every pixel, however this map 

does give us the ability to aggregate pixels within any watershed in the study area and come up with an 

average BCS value for that watershed.  

Figure 11. Predicted vs. Observed BCS with regression 
model statistics. 
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CASE STUDY 3: OVERALL ECOSYSTEM HEALTH 

Our last case study involves deriving an indicator for overall ecosystem health. This is not a statistically 

derived model as it is meant to illustrate the potential and flexibility of this unique combination of spatially 

explicit data and current GIS processing tools at our disposal today. We simply took variables that, as 

experts in our fields, we felt were important indicators of a healthy ecosystem, and for those data layers we 

classified them into quantiles using 10 classes. A quantile classification takes into account the distribution 

of the variable and assigns 10% of the values in the dataset to each class (for a 10 class system). The 

resulting data set includes values of 1 through 10. This allows us to create equations where each variable 

has equal influence on the equation. In this example we chose one variable from stream chemistry, soil 

chemistry, foliar chemistry and added those together, we then subtracted the forest decline status in 2006 

and finally we subtracted nitrogen deposition (Equation 2).  

Equation 2 Ecosystem sensitivity index equation. 

𝐸𝐸𝐻𝐻𝐻𝐻𝐵𝐵𝐸𝐸𝐵𝐵𝑆𝑆𝑀𝑀𝐻𝐻 𝐵𝐵𝑀𝑀𝑜𝑜𝐵𝐵𝐹𝐹𝑆𝑆𝐹𝐹𝑆𝑆𝐹𝐹𝑆𝑆𝐸𝐸 𝐼𝐼𝑜𝑜𝐼𝐼𝑀𝑀𝐸𝐸

= 𝐵𝐵𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝐻𝐻 𝑊𝑊𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆 𝑀𝑀𝐻𝐻 + 𝐵𝐵 ℎ𝐻𝐻𝑆𝑆𝐹𝐹𝑜𝑜𝐻𝐻𝑜𝑜 𝐵𝐵𝑆𝑆𝐵𝐵𝑀𝑀 𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐻𝐻𝑜𝑜 + 𝐹𝐹𝐻𝐻𝑀𝑀𝐹𝐹𝑆𝑆𝑆𝑆 𝐵𝐵𝑆𝑆

− 𝐹𝐹𝐻𝐻𝑆𝑆𝑀𝑀𝐵𝐵𝑆𝑆 𝐷𝐷𝑀𝑀𝐻𝐻𝑀𝑀𝐹𝐹𝑜𝑜𝑀𝑀 𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 (2006) −  𝑁𝑁𝐹𝐹𝑆𝑆𝑆𝑆𝐻𝐻𝑆𝑆𝑀𝑀𝑜𝑜 𝐷𝐷𝑀𝑀𝑀𝑀𝐻𝐻𝐵𝐵𝐹𝐹𝑆𝑆𝐹𝐹𝐻𝐻𝑜𝑜 

  

Base Cation Surplus
-119 to -18.35

-18.36 to 8.57

8.58 to 32.12

32.11 to  54.04

54.05 to  74.19

74.2 to 94.38

94.3 to 114.58

114.59 to 136.45

136.46 to 163.38

163.39 to 309.77

Figure 12. Map of predicted base cation surplus. 
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The index ranges from -14 to 25 with lower numbers representing areas of the landscape that are more 

sensitive or vulnerable and higher numbers are where the ecosystem is healthier. Different weightings can 

be assigned to each variable based upon the relative importance of a given variable. This approach is 

infinitely flexible, and can be used to create map products with input from groups of experts focusing on 

nebulous issues such as future ecosystem health or where to focus management efforts to protect water 

quality, mitigate hemlock loss, or manage sugar maple. Our map shows areas across the study area where 

we hypothesize that the ecosystem is in poor health (low numbers) or good health (high numbers) relative 

to other areas on the map.  

Ecosystem Sensitivity
-14 to -9.0

-8.9 to  -6.0

-5.9 to -3.0

-2.9 to 0

0 to 3.0

3.0 to  6.0

6.01 to  8.0

8.01 to 10

10.01 - 12.0

12.01 to 15.0

15.01 to 18.0

18.01 to 25.0

Figure 13. Map of overall ecosystem health. Lower values represent areas of the landscape where ecosystem 
health may be compromised. 
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CONCLUSION 

We have presented examples that illustrate the flexibility and utility of the data layers compiled in the 

project and the ARCMAP database that contains the data layers. The strength of this data set lies in the 

ability to take a question driven approach to understanding ecosystem dynamics across the Catskills based 

upon user defined assumptions and thresholds, and showing answers in the form of spatially explicit maps 

that can show patterns across the landscape, allow for queries about total acreage impacted, or even total 

acreage impacted by ownership. The value of this approach can be enhanced by the addition of other 

spatially explicit data or data layers that currently exist or can be created.  
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