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Abstract

In order to aid land managers in monitoring and controlling the ongoing hemlock woolly adelgid outbreak, more accurate landscape scale

tools are required to locate the hemlock resource, identify infestation and spot early decline. To this end, NASA’s Airborne Visible Infra-red

Imaging Spectrometer was flown over the infestation front in the Catskills region of New York during the summer of 2001. Mixture Tuned

Matched Filtering in ENVI was used to ‘‘unmix’’ spectra and quantify the hemlock signature contribution to each pixel. The resulting percent

hemlock basal area coverage correctly identified hemlock dominated pixels (>40% basal area) with 83% accuracy. Key wavelengths and

health indices were examined to determine if a subset of wavelengths could accurately predict an 11-class decline rating system. A linear

regression based on reflectance at a chlorophyll sensitive wavelength (R683 nm), coupled with a water band index (R970/R900), was able to

predict decline with 85% accuracy. The extreme accuracy at the low (0–3) end of the range indicated that these wavelengths might be used to

assess early decline, before visual symptoms are apparent in the field.
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1. Introduction

Over the past century, one of the greatest threats to the

health of North American forests has been the introduction

of exotic pathogens and insect pests. Such invasions often

result in drastic and long-term changes in forest ecosys-

tems, aesthetic conditions and important natural resources

(Castello et al., 1995; Liebhold et al., 1995). During the

20th century, widespread mortality and decline has

occurred among species such as American chestnut

(Castanea dentate Marsh), American elm (Ulmus ameri-

cana), oak (Quercus spp.) and American beech (Fagus

grandifolia Ehrh.). Currently, eastern hemlock (Tsuga

canadensis L. Carr.) forests are threatened by another

major forest pest, the hemlock woolly adelgid (Adelges

tsugae Annand) (HWA).
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Since the 1980’s when HWA first surfaced in the

Northeast, it has spread rapidly, leading to decline and

mortality in over eleven states, from North Carolina to

Massachusetts (Souto et al., 1995). Although its trajectory is

somewhat unpredictable, current estimates are that HWA is

spreading 10–15 miles a year into uninfested areas (Orwig

& Foster, 1998; Souto et al., 1995). Once settled on young

hemlock twigs, HWA causes needle loss, bud mortality and

finally branch and tree mortality, typically within 4 to 6

years (McClure, 1991; Shields et al., 1995). Most infested

eastern hemlock trees have shown no resistance to HWA

and little chance for recovery (McClure, 1995).

The potentially severe consequences and large scale of

the HWA infestation requires that land managers be familiar

with the actual location of the hemlock resource and its

health and infestation status. Most assessments of forest

decline involve time-consuming field based methods.

Although these methods are valuable in monitoring gross

changes over time, they are not able to identify trees in the
ent 97 (2005) 163 – 173



J. Pontius et al. / Remote Sensing of Environment 97 (2005) 163–173164
very early stages of decline (Sampson et al., 2000) or assess

large acreages. Remote sensing technologies are the most

viable option to assist land managers in health assessment

and monitoring at a regional scale.

To date, remote sensing of forest health has involved the

classification of various degrees of defoliation and mortality

using aerial photography or coarse spectral resolution visible/

NIR space-based sensors, such as Landsat Thematic Mapper

(TM). Lambert et al. (1995) used Landsat-TM imagery to

separate three categories of damage in Norway spruce with

75% accuracy. Similar defoliation based studies have

predicted four classes of hemlock defoliation with moderate

accuracy (Royle & Lathrop, 1997, 2002; Royle et al., 1995).

The use of this type of imagery is limited in several ways.

For example, in areas of mixed coniferous vegetation, errors

can be introduced due to the spectral similarity between

damaged trees of one species to healthy spectra of other

species (Rosengren & Ekstrand, 1988). In addition it can be

equally difficult to distinguish a severely defoliated hemlock

stand from an inherently sparse healthy stand (Royle &

Lathrop, 2002). Finally, when decline is measured solely as

a function of defoliation, earlier signs such as reductions in

photosynthesis and chlorophyll content are not detected.

When Landsat-TM data are used to assess forest health,

moderate and light damage stands are often difficult to

distinguish due to overlap in their reflectance ranges

(Lambert et al., 1995; Royle & Lathrop, 2002).

Many studies have demonstrated that hyperspectral

instruments are needed to accurately detect detailed changes

in vegetation condition (Treitz & Howarth, 1999). Many

diagnostic features for estimating plant decline are located

in relatively narrow wavebands, interspersed with insensi-

tive features (Treitz & Howarth, 1999). Ratios or pairs of

wavelengths (indices) tend to highlight significant features

while correcting for geometrical and background effects

(Baret & Guyot, 1991) by targeting decline sensitive bands

paired with an insensitive ‘‘control’’ band (Treitz &

Howarth, 1999). Such simple transformations have been

closely correlated with plant characteristics, without the

sensitivity to external variables such as sun angle or

instrument variability (Pinty et al., 1993).

Common stress responses, such as the ‘‘blue shift’’ away

from the normal inflection point of the red edge reflectance

feature, are also dependent on the use of hyperspectral

instruments to pick up the subtle shifts (on the order of 5

nm) that accompany pre-visual decline (Rock et al., 1988).

Using a 72-channel CASI sensor, Sampson et al. (2000)

found strong relationships between reflectance and leaf

chlorophyll content. Because chlorophyll content is known

to decrease in stressed vegetation, it may be one of the most

important indicators of early decline (Zarco-Tejada et al.,

2000). Chlorophyll a and b content are particularly good

indicators of decline because of their direct role in photo-

synthesis. Narrow wavebands near 700 nm where changes

in chlorophyll absorption are easily detectable have been

recommended for early detection of forest damage (Hoque
et al., 1990, 1992) and were able to detect decreased vigor,

before visual symptoms were apparent, in pine seedling

canopies (Cibula & Carter, 1992).

Existing literature and previous work by the authors

(Pontius et al., 2005) highlight several indices and wave-

lengths that are able to identify decline, including pre-visual

symptoms, using field and benchtop instruments. This study

was designed to expand this laboratory based work to a

remote sensing platform. Specifically our aim was to:

1. quantify the ability of AVIRIS to map hemlock

abundance,

2. identify potential wavelengths for early hemlock decline

detection, and

3. determine if hyperspectral imagery from a remote

sensing platform can predict early hemlock decline

symptoms.

2. Methods

2.1. Remote sensing data

On July 20, 2001, hyperspectral imagery from NASA’s

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

was obtained for the 700,000 acre Catskills State Park region.

Flown on an ER-2 aircraft, AVIRIS measures upwelling

radiance in 224 contiguous channels between 400 and 2400

nm with a 10 nm spectral resolution (Vane et al., 1988). In

October 2001, hemlock decline information was collected at

13 HWA monitoring plots (20�20 m). The end of the

growing season was selected for sampling to facilitate the

quantification of HWA infestation levels nearest the insect’s

maturity. No significant external events (e.g. drought, insect

outbreak, etc) occurred between the time of the flight and

ground truth sampling. To map hemlock abundance, percent

hemlock basal area was recorded at 70 conifer dominated

prism plots across the Catskills (Fig. 3). Geographic location

was collected for all plots using a WAAS enabled Merridian

Gold global positioning system (Rees, 2001).

Between the sensor and the surface, there is an extremely

dynamic atmosphere that can dramatically alter the spectral

radiation reflected from the canopy (Schowengerdt, 1997).

In order to account for absorption and scattering by gasses

and particulates as light passes through the atmosphere,

atmospheric calibration algorithms using radiative transfer

codes, rescale raw radiance data to surface reflectance by

correcting for atmospheric influence (Van der Meer & de

Jong, 2001). Atmospheric Correction Now software

(ACORN 4.0 Analytical Imaging and Geophysics LLC,

ImSpec 2002), developed specifically for hyperspectral

sensors such as AVIRIS, removed atmospheric effects in

the data using averaged time and geographic inputs from the

five individual AVIRIS runs.

With a field of view of 30-, AVIRIS samples with view

zenith angles of up to 15- to each side of nadir. This causes
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a nearly linear decrease in reflectance as the view angle

moves from forelit to backlit surfaces (Kennedy et al.,

1997). To remove the resulting view-angle brightness

gradient while maintaining the radiometric integrity of the

image, the AVIRIS imagery was corrected using a CSIRO

destreak algorithm (Datt et al., 2003), modified by the

authors to employ global statistics averaged from all 5 runs.

This linear algorithm normalized the mean and standard

deviation of each column to the global mean and variance

for each wavelength in the full image (Datt et al., 2003).

After atmospheric and brightness corrections, the

imagery was geometrically registered to a USGS 1 m

resolution digital orthoquads using a polynomial degree 2

warping method (ENVI 4.0 software, Research Systems,

Inc). Each of the five runs were registered individually

before mosaicing, with an average of 325 ground control

points used per run and resulting in an average control point

total error of 3.85 m. AVIRIS reflectance spectra were then

extracted for pixels covering each of the 13 decline and 70

abundance plots (Fig. 1).

2.2. Hemlock abundance

Seventy field plots were randomly selected from

primarily evergreen dominated areas within the AVIRIS

imagery to determine the percent hemlock basal area using a

basal area factor 10 prism. Mixture Tuned Matched Filtering

(MTMF), (Nielsen, 2001; Tompkins et al., 1997; Williams

& Hunt, 2002) was used to quantify the hemlock component

of each pixel. This involved first reducing the 224-band

AVIRIS image to a 28-band Minimum Noise Fraction

(MNF) transformed image. This MNF transform as modi-

fied from Green et al. (1988) and implemented in ENVI, is

essentially two cascaded Principal Components transforma-

tions which removes noise and reduces dimensionality in

the data. Transformed spectra from 7 ‘‘pure hemlock’’

calibration pixels with greater than 90% hemlock cover

were then used to calibrate the MTMF. Output from the
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Fig. 1. The steps involved in processing the raw AVIRIS imagery and then cr
MTMF included probability and infeasibility data for each

pixel. A linear regression based on probability and

infeasibility data was constructed from the 70 prism plots

to predict percent hemlock. This equation was then applied

to the MTMF output for calculation of percent hemlock

basal on a pixel-by-pixel basis.

2.3. Hemlock decline

The five canopy dominant hemlocks on the 13 estab-

lished monitoring plots were assessed using methods

specifically designed to quantify the various sequential

symptoms of decline that follow adelgid infestation. This

included the percent of terminal branchlets with new growth

(R. Evans personal communication), percent transparency

(quantified using a concave spherical densiometer (Pontius

et al., 2002)), percent fine twig dieback, and live crown ratio

(USDA Forest Service Crown Rating Guide). Repeatability

across a subset of plots was tested using five different field

crews. There were no significant differences in decline

measurements between crews, ensuring the consistency of

our measurements. The categories of hemlock health

described in Table 1 reflect the typical characteristics for

each health measurement at various categories of hemlock

decline. Health category assignments for each measurement

on a tree were averaged to determine one overall decline

rating that best described tree health (where 0=perfect

health, 10=dead). Health scores were averaged for the five

canopy dominant trees on each plot to determine a

continuous plot level health rating for comparison to

hyperspectral imagery. Visual symptoms are not apparent

in the field until decline class 3 when transparency and

dieback reach 15% and 5% respectively.

Existing decline detecting indices (Table 2) were

calculated for each plot and entered into a stepwise linear

regression, along with a suite of individual wavelengths

significantly correlated with hemlock decline in a previous

ASD FieldSpec Pro benchtop study (Pontius et al., 2005).
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Table 1

Decline rating summary: the best-fit categories for each of the individual

measurements were averaged to determine which decline rating best

described each tree’s overall health

Decline class Health status Typical characteristics

0 Perfect health All branchlets produce a flush

of new growth

Minimal canopy transparency

No fine twig dieback

More than 90% of the total tree

height is photosynthethically active

1 Very healthy Almost all branchlets produce

new growth

Only 6% to 9% of the canopy is

transparent

Fine twig dieback is minimal

80% to 89% of canopy is

photosynthetically active

2 Healthy

(typical healthy

Over 85% of terminal branchlets

produce new growth

forest co-dominant) 10% to 14% canopy transparency

Less than 5% fine twig dieback

70% to 79% of canopy is

photosynthetically active

3 Earliest decline Slight reductions in new growth

production (80% to 84%)

15% to 19% canopy transparency

5% to 10% fine twig dieback

65% to 69% of canopy is

photosynthetically active

4 Light decline More noticeable reductions in

new growth (70% to 74%)

20% to 24% canopy transparency

Approaching 10% fine twig dieback

60% to 64% of canopy is

photosynthetically active

5 Light to moderate

decline

Less than 3 /4 of branchlets are

producing more growth

(70% to 74%)

25% to 29% canopy transparency

10% to 15% fine twig dieback

50% to 59% of canopy is

photosynthetically active

6 Moderate decline Only 60% to 69% of terminals

produce a flush of new growth

30% to 34% canopy transparency

Up to 15% fine twig dieback

40% to 49% of canopy is

photosynthetically active

7 Moderate to

severe decline

Barely half (40% to 59%) of

terminals produce a flush of

new growth

35 to 39% of the canopy

is transparent

15 to 20% fine twig dieback

30% to 39% of canopy is

photosynthetically active

8 Severe decline Barely 1 /3 (20% to 39%)

of terminals produce a flush

of new growth

40% to 44% of the canopy

is transparent

Up to 20% fine twig dieback

20% to 29% of canopy is

photosynthetically active

Table 1 (continued)

Decline class Health status Typical characteristics

9 Near death Less than 20% of terminals

produce a flush of new growth

More than 45% of canopy

is transparent

Greater than 25% fine twig

dieback

Less than 20% of the canopy is

photosynthetically active

10 Dead 100% defoliated

Visual symptoms are not apparent in the field until decline class 3 when

transparency and dieback reach 15% and 5 % respectively.
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Due to the small sample size, a maximum of 2 terms and

conservative significance cutoff limits were established for

each of the regression steps to avoid over fitting (probability

to enter=0.250, probability to leave=0.01). Mallow’s Cp and

PRESS statistics were used to compare the predictive abilities

of various models (Kozak & Kozak, 2003). Because of the

small sample size, full double-cross validation (jackknifed

residuals) was used in lieu of independent validation to assess

predictive abilities (Kozak & Kozak, 2003). After establish-

ing the best-fit hemlock decline model, the resulting equation

was applied to all pixels with greater than 40% hemlock basal

area on a pixel-by-pixel basis.
3. Results and discussion

3.1. Hemlock abundance

Percent hemlock basal area ranged from 0% to 100% on

the 70 abundance plots, with an average of 49% (Table 3). Of

these plots, the majority were dominated by evergreen

species, with only 13% classified as hardwood mix or non-

forested types. Because of the domination of evergreen stands

in this data set, this becomes a strong test of how well

hemlock can be differentiated from other spectrally similar

conifer species.

Output from the MTMF included a) the probability that

the pure hemlock signature was a component of reflectance

and b) the infeasibility of the pure hemlock signature as a

component of reflectance for each pixel. These 2 variables

were input into Eq. (1) to calibrate percent hemlock basal

area across the 70 prism plots. This translation of MTMF

data to abundance reported an R2 of 0.65 and a RMSE of 12

(Fig. 2). For comparison to straight classifications of

dominant cover type, the MTMF based regression was able

to correctly differentiate hemlock/non-hemlock (cutoff at

40% hemlock basal area) stands 83% of the time.

Abundance ¼ 76:10þ ProbT41:18Þð � InfeasT5:53Þ:ð
ð1Þ

The linear regression equation to predict percent hemlock

basal area where Prob = the probability output and Infeas =



Table 2

Known decline related indices: a list of existing indices included in our analyses that are known to have strong relationships with decline specific physiological

responses (i.e. reductions in photosynthesis or chlorophyll content), where R =reflectance and FD=first derivative

Index Formula Primary absorbance feature Citation

Carter and Miller Stress
CMS ¼ R694nm

R760nm

Chlorophyll content (Carter & Miller, 1994)

Curvature index
CI ¼ R683nmT2

R675nmTR691nm

(Zarco-Tejada et al., 2002)

Derivative

chlorophyll index DCI ¼ FD705nm

FD723nm

Chlorophyll a and b content (Zarco-Tejada et al., 2002)

Chlorophyll fluorescence
CF ¼ FD690nm

FD735nm

(Mohammed et al., 1995)

Normalized difference

vegetation index NDVI ¼ R800 nm� R680 nm

R800 nmTR680 nm

Chlorophyll content and

energy absorption

(Deblonde & Cihlar, 1993; Gamon et al.,

1997; Myneni et al., 1995; Rouse et al.,

1974)

Photo-chemical

reflectance index PRI ¼ R531 nm� R570 nm

R531 nmTR570 nm

(Gamon et al., 1990, 1997;

Rahman et al., 2001)

Red edge inflection point REIP ¼ kFD max Chlorophyll a content; green

vegetation density

(Gitelson & Merzlyak, 1996; Rock et al.,

1988; Vogelmann et al., 1993)

Ratio vegetation index
RVI ¼ R800 nm

R680 nm

Chlorophyll content (Pearson & Miller, 1972; Royle &

Lathrop, 2002)

Water band index
WBI ¼ R970 nm

R900 nm

Canopy water content (Carter, 1993; Penuelas et al., 1997;

Tucker, 1980)
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the infeasibility output from a MTMF process. Validation

statistics were: R2 = 0.65 and RMSE = 12.

Much of the error introduced in this model resulted from

pine-dominated stands predicted to have a higher percentage

of hemlock than was actually present (Fig. 2). The spectral

unmixing methods appear to be able to identify all mature,

dominant hemlock stands accurately. However, there is also

the risk of classifying dense, white pine stands as containing

some hemlock when they do not. The most erroneous prism

plots used in this validation include red pine plantation
Table 3

Plot demographics: of the 70 basal area prism points used to validate the

MTMF for hemlock abundance, the vast majority were dominated by

evergreen species

Type N Avg.

% HE

Min

% HE

Max

% HE

Field 3 0 0 0

Hemlock hardwood mix 26 54 0 48

Hemlock 21 86 50 100

Larch 1 0 0 0

Red spruce mix 4 48 0 11

White/red pine 15 2 0 30

70 49 0 100

These points cover a range from 0% to 100% hemlock with an average of

49% hemlock basal area.
stands surrounded by mixed hemlock forest. It is our belief

that this problem may not be so much a limitation of the

AVIRIS instrument as a georegistration issue. If registration
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Fig. 2. Hemlock abundance was predicted with an R2 of 0.65 and RMSE of

12. Most error was manifest as under predicting stands with significant

understory hemlock (bottom right gray) and pine dominated stands

predicted to have hemlock (upper left gray). Circles represent hemlock

and mixed hemlock stands, open squares are dominated by other evergreen

species. Hemlock dominated stands were differentiated from non-hemlock

stands with 83% accuracy.



J. Pontius et al. / Remote Sensing of Environment 97 (2005) 163–173168
is off by several meters around these pine plantation stands,

the extracted spectra for accuracy assessment may indeed

contain a component of hemlock. While this error is

significant in our abundance predictions, we believe that

this equation adequately identifies hemlock dominated

stands for the application of decline predictions in this study.

In the upper end of the range, hemlock abundance

predictions were often low (Fig. 2). This may be due to the

inclusion of understory hemlock in the prism plot percent

basal area measurements that are not visible to the AVIRIS

sensor. In mixed, mid-successional stands, hemlock may not

be mature and present in the canopy in numbers sufficient to

impact canopy spectral signatures. Such trees are likely

shaded out by the intermediate successional, mature hard-

wood or pine canopy dominants. Mickelson et al. (1998)

found similar problems with mixed hemlock stands using

multi-temporal Landsat TM data.

For problems such as the HWA induced hemlock

decline, it is useful to map actual hemlock abundance so

that areas of relative susceptibility and ecological impact

can be identified. Applying Eq. (1) to the full AVIRIS

image (Fig. 3) highlights the heavy concentration of

hemlock in riparian areas. This suggests that widespread

hemlock decline and mortality could be a significant

factor in deteriorating surface water quality in the

Catskills.

3.2. Hemlock decline

While multiple factors were significantly correlated with

decline (Table 4), a mixed, stepwise linear regression
Fig. 3. A map of percent hemlock basal area highlights the high
suggests that only R683 and the Water Band Index (WBI)

(Carter, 1993; Penuelas et al., 1997; Tucker, 1980) were

necessary to predict decline across the low to mid range

of decline (R2=0.88, RMSE=0.23 and a PRESS=1.67)

(Eq. (2); Fig. 4). Treated as a class variable by rounding

to the nearest integer, this predicted decline class on the

calibration data with 85% accuracy and to within one

class with 100% accuracy. An average jackknifed residual

error of 0.13 indicates the expected accuracy on an

independent data set would also be good across the range

of data. These wavelengths were also significantly

correlated with decline (WBI r=0.53, R683 r =0.28) in

a previous leaf-level study (Pontius et al., 2005). The full

spectrum with key wavelengths highlighted can be seen in

Fig. 5.

Decline ¼ � 16:82þ R683T0:02Þð þ WBIT15:40Þ:ð ð2Þ

The linear regression equation to predict hemlock decline

where R683 = the reflectance at 683 nm and WBI = the

Water Band Index as defined in Table 2. Validation statistics

were: R2 = 0.88, RMSE = 0.23 and PRESS = 1.67.

Given that Eq. (2) works well on an empirical basis, it

is useful to understand whether the wavelengths and

indices used in the regression equations are theoretically

related to tree health or physiological function. The

strongest correlation with decline, and one of the key

terms in Eq. (2), occurred at R683 nm. This wavelength is

associated with chlorophyll a absorbance (Carter, 1993;

Carter & Knapp, 2001; Kolling et al., 1996; Zarco-Tejada

et al., 2002).
concentration of hemlock in lowland and riparian areas.



Table 4

Pairwise correlations with decline are reported with their known absorbance features

Wavelength Correlation with decline Absorbance feature Citation

R683 0.8542 Chlorophyll a (Carter, 1993)

R1653 0.6508 Benzene rings, C–H stretch (Williams & Norris, 2001)

R952 0.4611 Water (Williams & Norris, 2001)

R760 0.4347 Water (Osborne & Fearn, 1986)

CF ¼ FD690 nm

FD735 nm

0.3992 Chlorophyll florescence;

photosynthetic activity

(Mohammed et al., 1995)

WBI ¼ R970 nm

R900 nm

0.3787 Canopy water content (Carter, 1993; Penuelas et al.,

1997; Tucker, 1980)

RVI ¼ R800 nm

R680 nm

�0.3582 Chlorophyll content (Pearson & Miller, 1972;

Royle & Lathrop, 2002)

PRI ¼ R531 nm� R570 nm

R531 nmþ R570 nm

0.3578 Xanthohyll cycle activity (Gamon et al., 1990, 1997;

Rahman et al., 2001)

CMS ¼ R694 nm

R760 nm

0.3026 Chlorophyll content (Carter & Miller, 1994)

REIP ¼ kFD max 0.2997 Chlorophyll a content;

green vegetation density

(Gitelson et al., 1996;

Rock et al., 1988;

Vogelmann et al., 1993)

NDVI ¼ R800 nm� R680 nm

R800 nmþ R680 nm

�0.2717 Chlorophyll content and

energy absorption

(Deblonde & Cihlar, 1993;

Gamon et al., 1997)

CI ¼ R683 nmT2
R675 nmTR691 nm

0.1254 Chlorophyll florescence (Zarco-Tejada et al., 2002)

DCI ¼ FD705 nm

FD723 nm

�0.0523 Chlorophyll a and b content;

chlorophyll florescence

(Zarco-Tejada et al., 2002)

Bold indicates significance at the p <0.2 level. Variables are listed by correlation strength. Only R683 nm and the WBI were retained for inclusion in the

stepwise linear regression to predict decline.
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Chlorophyll content is a good detector of stress because

of its direct role in photosynthesis. Increasing reflectance

near the 700 nm range represents the often-reported blue
Actual
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Fig. 4. The two-term linear regression equation based on R683 nm and the

WBI predicted hemlock decline with an R2 of 0.88 and RMSE of 0.23.
shift in stressed plants. This shift in the red edge inflection

point results from stress induced reductions in chlorophyll

content (Cibula & Carter, 1992; Rock et al., 1988). Because

the absorptivity of chlorophyll is relatively low in this

region, even small decreases in chlorophyll content result in

significantly decreased absorption and increased reflectance

in stressed plants (Carter, 1993; Carter & Knapp, 2001).

Stress induced changes in reflectance have been directly

linked to foliar chlorophyll content in numerous studies

(Gitelson & Merzlyak, 1996; Rock et al., 1988; Vogelmann

et al., 1993).

The WBI was the second key term in predicting hemlock

decline. This index is a ratio between the reflectance at 970

nm, where absorbance by water is evident, and 900 nm used

as a reference, ‘‘control’’ band. Several studies have shown

that the WBI closely tracks changes in leaf relative water

content, leaf water potential and stomatal conductance (Bull,

1991; Penuelas et al., 1993; Penuelas et al., 1996, 1994). In

some species, WBI was able to track even mild water stress

(Penuelas et al., 1996).
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Fig. 5. AVIRIS data extends from 450 to 2500 nm with strong atmospheric

water absorption bands removed and reflectance averaged for healthy

samples (Decline<2) and those experiencing the early stages of decline

(2<Decline<4). We highlight those wavelengths found to be significant in

predicting hemlock decline.
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Relative susceptibility of hemlock to HWA has been

linked to various site and landscape factors related to water

availability (Bonneau et al., 1997; Onken, 1995; Royle &

Lathrop, 1999). Drier conditions stress already weakened

tress, making them more susceptible to HWA and decline.

There is also evidence that HWA injects toxic saliva at

feeding sites (McClure et al., 1996). It is postulated that the

toxic effects of this saliva may include a constricting effect

on xylem, which could lead to leaf dehydration following
Fig. 6. Applied to all pixels with greater than 40% hemlock basal area, the decli

corner of the region where HWA has the longest history in hemlock stands. Othe
infestation (Shields et al., 1995). Although we did not

directly measure leaf water content, it is plausible that trees

experiencing decline may be under some form of water

stress.

The predictive decline equation (Eq. (2)) was created

using spectra from hemlock-dominated stands (40% to

100% hemlock). Therefore, we only predicted hemlock

decline for all pixels in the AVIRIS imagery with greater

than 40% hemlock as predicted by Eq. (1). Predicted

hemlock decline ranged from 0 to 7.7 across the Catskills as

compared to 1.8 to 4.1 found on the original 13 calibration

plots (Fig. 6).

Ideally, calibration equations are developed with field

data covering the full range of possible conditions (Martin

& Aber, 1997). Because HWA infestation was still relatively

new to the Catskills in 2001, severely declining trees were

difficult to find. To test the linear relationship between the

predictive equation and decline beyond the range of input

calibration data, the equation was applied to a 100 sample,

tree level dataset from a benchtop spectrometer based on

methods described in Pontius et al. (2005). Eq. (2) predicted

tree level decline across the complete range with a one-class

tolerance accuracy of 82%. Therefore, we believe that this

equation is linear and should hold beyond the range of

decline available for calibration development.

More severe decline is evident in the southeastern region

of the imagery (Fig. 6), coinciding with the area first

infested by HWA (Montgomery personal communication).

Average jackknifed residuals of 0.13 indicate that this

equation should also work on independent data from the
ne prediction highlights more severe decline symptoms in the southeastern

r stressors are not excluded from this analysis.
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same range (Kozak & Kozak, 2003). Additional data from 8

New York State Department of Environmental Conservation

(DEC) hemlock-monitoring plots were examined as a

preliminary independent validation. While the DEC decline

assessment was limited to a coarse evaluation of overall

hemlock health (categorized as healthy, HWA present but no

visible damage, or discoloration), their assessments were

predicted with a one-class tolerance accuracy of 88%

(labeling healthy as decline class 2, HWA present but no

visible damage as decline class 3 and discoloration as

decline class 4). While these results are promising, a more

rigorous validation covering the range of decline symptoms

in the Catskills and matching our assessment methods is

required to adequately represent the full range of conditions

expected in natural hemlock stands.

HWA damage differs from many other forest stressors in

that there is little noticeable change in color of damaged

foliage (Royle & Lathrop, 2002). Damage primarily appears

as a gradual thinning of the foliage with tree death occurring

in 4 to 6 years (McClure, 1987). Defoliation does not reach

levels classified as the very first stage of defoliation (>5%

dieback or >15% transparency) by traditional field-based

methods until after health class 3. Because Eq. (2) works

well below class 3, it appears that such imagery has the

capability to identify decline pre-visual symptoms.

In order for this technology to be applicable on a large

spatial and temporal scale, the relationships presented here

must also be shown to work on other datasets. Because the

AVIRIS data collected over the Catskills covered 5 different

flight lines, we believe that the relationships presented here

will prove robust enough for application to other hyper-

spectral imagery. Further, because the initial selection of

wavelengths for examination with the AVIRIS imagery was

based on results from a previous ASD benchtop spectrom-

eter, in which both studies showed similar relationships for

key wavelengths and indices (Pontius et al., 2005), we

believe that these relationships will also hold across other

hyperspectral instruments.

There is little evidence that these technologies can

diagnose causal agents, as decline may be related to a

variety of factors. Still, the best hope of successful

biological control for HWA must target newly infested

areas where trees are still relatively healthy. Therefore, the

ability to identify stands early is essential to the develop-

ment of sound forest management strategies.
4. Conclusions

This work indicated that hyperspectral sensors have the

ability to assess detailed hemlock decline on a landscape

scale. By training on pure hemlock spectra and running a

MTMF on the full AVIRIS spectrum, hemlock dominated

stands were identified with 83% accuracy. The full spectrum

was not required to predict hemlock decline. Using a linear

regression equation based on one chlorophyll (R683 nm)
and one canopy water content (WBI) sensitive variable,

early decline was predicted with R2=0.88 and average

jackknifed residual error=0.13. These variables capture the

physiological changes (reductions in chlorophyll content

and needle desiccation) expected to accompany early

hemlock decline. The accuracy of the predictions below

decline rating 3, when visual symptoms are first apparent in

the field, indicates that these wavelengths may be capable of

assessing pre-visual decline symptoms.

Although this technique is not diagnostic, it is likely that

most declining hemlock in this region is impacted by HWA.

More research is currently underway to assess the applic-

ability of this equation to other sensors and across areas with

a greater range of hemlock health. We anticipate that the

ability to map hemlock and monitor decline across the

landscape, will prove essential to the ultimate management

and control of invasives such as HWA.
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