
Regionalization of Flood Discharges for Rural, Unregulated Streams in New York, excluding Long Island

Prepared in cooperation with the NEW YORK STATE DEPARTMENT OF TRANSPORTATION

Back of cover page is intentionally blank.

REGIONALIZATION OF FLOOD DISCHARGES FOR RURAL, UNREGULATED STREAMS IN NEW YORK, EXCLUDING LONG ISLAND

By Richard Lumia

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 90-4197

Prepared in cooperation with the NEW YORK STATE DEPARTMENT OF TRANSPORTATION

DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write to:

U.S. Geological Survey P.O. Box 1669 Albany, NY 12201 Copies of this report may be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Denver Federal Center Box 25425 Denver, CO 80225

CONTENTS

	Page
Abstract	
Introduction	1
Purpose and scope	
Acknowledgments	2
Study area	
Physiography	
Geology	
Climate	
Data base for regression equations	
Annual peak-discharge records	
Discharge-frequency relations	
Basin characteristics	
Regression analysis	
Regionalization of flood-frequency estimates	
Delineation of hydrologic regions	
Regional basin and peak-discharge characteristics	
Regional regression	
Full-regression equations	
Drainage-area-only equations	
Computation of peak discharge	
Ungaged sites	
Sample computations	
Limitations, accuracy, and sensitivity of regression equations	
Suggestions for further study	30 20
Skewness coefficient	
Precipitation maps	
Small-stream data	
Other factors	
Summary	
Selected References	
TABLES	Page
	ruge
Table 1. Results of Wilcoxon Signed Ranks test on the 50-year peak-discharge regression	
residuals for eight hydrologic regions in New York	14
2. Full-regression equations for estimating peak discharges in each of eight hydrologic regions of New York	
3. Summary of full-regression equations for estimating peak discharges in New York	
4. Correction factors to adjust regional full-regression equations for transformation bias	
5. Regional flood-frequency equations based on drainage area only	
6. Range in regional basin characteristics used in the regression analyses for eight	
hydrologic regions in New York	38
7. Results of sensitivity analysis showing percent change in computed 50-year peak	
discharges within each of eight hydrologic regions of New York	40
8. Gaging stations and selected peak-discharge records used in the study	
9. Selected flood characteristics for gaging stations used in the study	
10. Selected basin characteristics for gaging stations used in the study	

ILLUSTRATIONS

	Pa	age
Figures 1-3.	Maps of New York showing: 1. Physiographic provinces 2. Distribution of major bedrock types 3. Generalized distribution of soil associations	4
4.	Example of a flood-frequency curve: Wappinger Creek near Wappingers Falls (station 01372500)	7
5.	Maps of New York showing flood-boundary delineations for five selected storms, 1913-85	8
6-14:	Graphs showing: 6. Annual peak discharges and 10- and 100-year recurrence intervals for selected gaging stations in each of eight hydrologic regions of New York	10
	7. Comparison of 50-year peak-discharge residuals from the statewide regression for gaging stations within eight hydrologic regions of New York, before and after regionalization	15
	8. Comparison of selected basin characteristics for gaging stations within eight hydrologic regions of New York	16
	9. Comparison of selected peak-discharge characteristics for gaging stations within eight hydrologic regions of New York	19
	10. Stations within each of the eight hydrologic regions in New York and for all stations combined distributed by:A. Length of period of record	
	11. Comparison of the monthly frequency of peak flows within each of the eight hydrologic regions in New York and for all stations combined	23
	12. Monthly frequency of annual peak flows at gaging stations used in the study for selected drainage-area sizes	24
	 13. Observed 50-year discharges for stations within eight hydrologic regions of New York and 50-year discharges predicted from: A. Equations of Zembrzuski and Dunn (1979) B. Generalized least squares full-regression equations C. Full and drainage-area-only regression equations 	32
	14. Comparison of station skews with generalized map skews from U.S. Water Resources Council (1981), for gaging stations within eight hydrologic regions of New York	42

PLATES (in pocket)

- Plate 1.--Map showing distribution of mean annual precipitation in New York (excluding Long Island), 1931-60.
 - 2.--Map showing locations of hydrologic regions and streamflow-gaging stations used in the study.

CONVERSION FACTORS AND VERTICAL DATUM

Multiply	By	To obtain
	Length	
inch (in) foot (ft) mile (mi)	25.40 0.3048 1.609	millimeter meter kilometer
	Area	
square mile (mi ²)	2.590	square kilometer
	Volume	
cubic foot (ft ³)	0.02832	cubic meter
	Flow	
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second

Sea Level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929—a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

Back of page is intentionally blank.

REGIONALIZATION OF FLOOD DISCHARGES FOR RURAL, UNREGULATED STREAMS IN NEW YORK, EXCLUDING LONG ISLAND

By Richard Lumia

Abstract

Techniques are presented for estimating the magnitude and frequency of flood discharges on rural, unregulated streams in New York, excluding Long Island. Peak discharge-frequency data and basin characteristics from 313 streamflow-gaging stations in New York and adjacent States were used to develop multiple linear regression equations for floods with recurrence intervals of 2 to 500 years. A generalized least-squares (GLS) procedure was used to develop the regression equations. A separate set of equations was developed for each of eight hydrologic regions of New York; standard errors of prediction range from 17 to 51 percent. Significant explanatory variables included in the regression equations are drainage area, main-channel slope, percent basin storage, mean annual precipitation, percent forested area, average main-channel elevation, and a basin-shape index. Drainage areas for sites used in the analyses ranged from 0.41 to 4,773 square miles.

Methods of computing peak discharges differ, depending on whether the estimate is for a gaged or ungaged basin, and whether the basin crosses hydrologic-region boundaries. Examples of computations are included. Results of the GLS equations were statistically and graphically compared with those obtained from previously (1979) published equations and were found to be unbiased and generally more accurate.

Basin characteristics, log-Pearson Type III statistics, and regression and weighted estimates of the discharge-frequency relations are tabulated for the gaging stations used in the regression analyses. Sensitivity analyses showed that mean-annual precipitation and drainage area are the variables to which computed discharges are most sensitive in the regression equations.

INTRODUCTION

Flood damage is a constant threat along flood plains and thus is a concern for local and regional managers and planners. The effective management of flood-prone areas and the design of structures along rivers and streams requires knowledge of the magnitude and frequency of floods. Although several U.S. Geological Survey reports provide techniques for estimating the magnitude and frequency of floods on rural, unregulated streams in New York by the index-flood method (Robison, 1961; Speer and Gamble, 1965; Tice, 1968; Wiitala, 1965), and by ordinary least-squares multiple-regression techniques (Darmer, 1970, and Zembrzuski and Dunn, 1979), an additional 12 years of annual peak-discharge data, new guidelines for computing station flood-frequency curves as outlined in U.S. Water Resources Council Bulletin 17B (1981), and new statistical methods as applied to multiple-regression analysis warranted revision of techniques given previously.

Since the completion of the study by Zembrzuski and Dunn (1979), the U.S. Geological Survey, in cooperation with New York State Department of Transportation, has been developing improved methods for estimating the magnitude and frequency of floods at gaged or ungaged sites on rural, unregulated streams in New York, excluding Long Island. Peak-discharge characteristics can be estimated through multiple regression equations based on measured basin and climatic characteristics within the drainage area upstream from the site of interest. Procedures for estimating peak discharges with recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years differ according to whether the estimate is for a gaged or ungaged basin, and whether the basin crosses hydrologic-region boundaries or State lines. In this study, regression equations were developed for eight hydrologic regions of New York from

data collected through September 1987 at 313 gaged sites in and adjacent to New York. Estimated standard errors of prediction for the regression equations range from 17 to 51 percent.

Development of techniques for estimating peak discharges on regulated streams, urbanized basins, and streams on Long Island was beyond the scope of this study. Peak discharges for urban areas can be estimated through techniques of Sauer and others (1983), Stedfast (1986), and Lumia (1984) if the effects of urbanization can be quantified.

Purpose and Scope

This report presents techniques to estimate the magnitude and frequency of floods on rural, unregulated streams within eight hydrologic regions of New York at gaged sites, ungaged sites, and ungaged sites on gaged streams. It supersedes previous U.S. Geological Survey reports that provide techniques for estimation of flood magnitude and frequency on rural, unregulated streams in New York.

The report discusses the delineation of the eight hydrologic regions through statistical and hydrologic analyses and presents sets of equations for each of the eight hydrologic regions. It also describes use of the equations and includes sample computations as well as tables of selected flood and basin characteristics and summaries of statistical analyses.

Acknowledgments

The New York State Department of Environmental Conservation, the U.S. Army Corps of Engineers, the Hudson River - Black River Regulating District, the New York Power Authority, Niagara Mohawk Power Corporation, New York City Department of Environmental Protection, Cornell University, and several other municipal and county governments provided support for data-collection programs.

STUDY AREA

Physiographic and geologic characteristics were considered in delineation of hydrologic-region boundaries. These factors influence the timing and magnitude of flood response, although many were not directly included in the regression equations.

Physiography

New York (excluding Long Island) encompasses parts or all of eight physiographic provinces (fig. 1), which range from high relief in the Adirondack and Catskill Mountains to low relief along the Great Lakes, the St. Lawrence River valley, and the Hudson and Mohawk River valleys. In northern New York, the Adirondack province covers about 10,000 mi². The western half of the province and parts of the southern and northern margins are plateaulike. Lakes and ponds are abundant (about 2,000), especially in and near the mountains. The eastern half of the Adirondack province is mountainous; some elevations exceed 5,000 ft above sea level (Fenneman, 1938). The St. Lawrence Valley of extreme northern New York is a smooth glacial plain with elevations dropping below 200 ft along the St. Lawrence River. The Mohawk Valley, just south of the Adirondack province, drains parts of the southern Adirondacks to the Hudson River.

The two major physiographic divisions of western New York are the Central Lowlands and the Appalachian Plateau. The Central Lowlands in New York extend east from Lake Erie, north of the Finger Lakes region adjacent to Lake Ontario, to just west of the Mohawk and St. Lawrence Valleys and the Adirondacks. South of Lake Ontario, the lowland plain abuts against the northern escarpment of the Appalachian Plateau, while east of Lake Ontario the plain comes to an end against the Tug Hill plateau. Drainage throughout the Central Lowlands is generally toward Lakes Erie and Ontario. The Appalachian Plateau extends throughout the southern part of western New York east to and including the Catskill Mountains and southern sections of the Mohawk River basin. The Appalachian Plateau is characterized by hilly terrain; its highest elevations are in the Allegheny and Catskill Mountains.

Physiographic divisions in eastern and southeastern New York include the Valley and Ridge province, the New England province, and the Piedmont province. The Valley and Ridge province extends from the New Jersey border, north through the lower Hudson River Valley to the southern end of Lake Champlain. Longitudinal drainage is prominent in the Hudson-Champlain section of the province. The New England province also extends from the New Jersey border northward, crossing the southern part of the Hudson River. It includes the Taconic Mountains, running along the southeastern border of New York north to just south of Lake Champlain. The Piedmont province includes a small lowland area in southeastern New York just north of New Jersey.

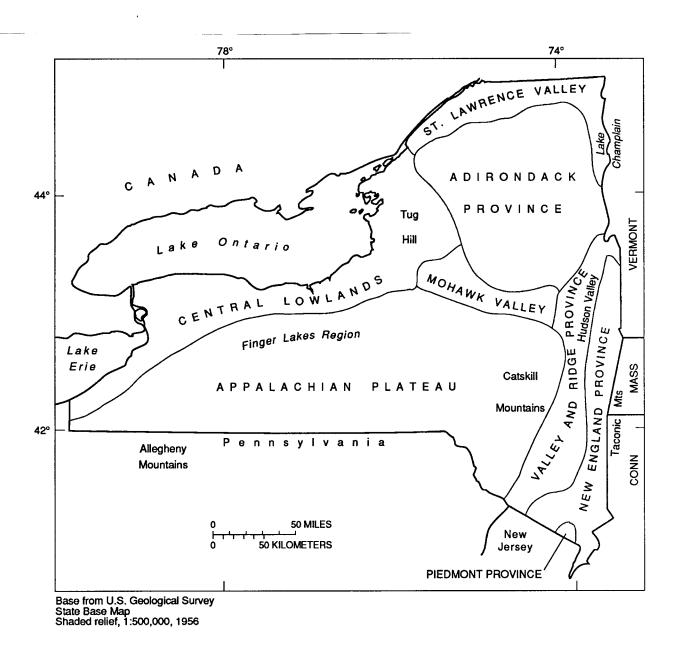


Figure 1.--Physiographic provinces of New York. (Modified from Lyford and others, 1984, fig. 2).

Geology

Crystalline rocks dominate the Adirondack and New England provinces but contain carbonate rocks in outcrop fringes (escarpments) along the northern and eastern edges of the Appalachian Plateau province, in isolated areas of the St. Lawrence Valley, and in eastern New York. The general distribution of major bedrock units in New York is depicted in figure 2. Shale, the most extensive bedrock unit, predominates in the Appalachian Plateau, western Central Lowland, the Mohawk Valley, and the Valley and Ridge province. Sandstone dominates in the Piedmont, St. Lawrence Valley, and eastern Central Lowland provinces.

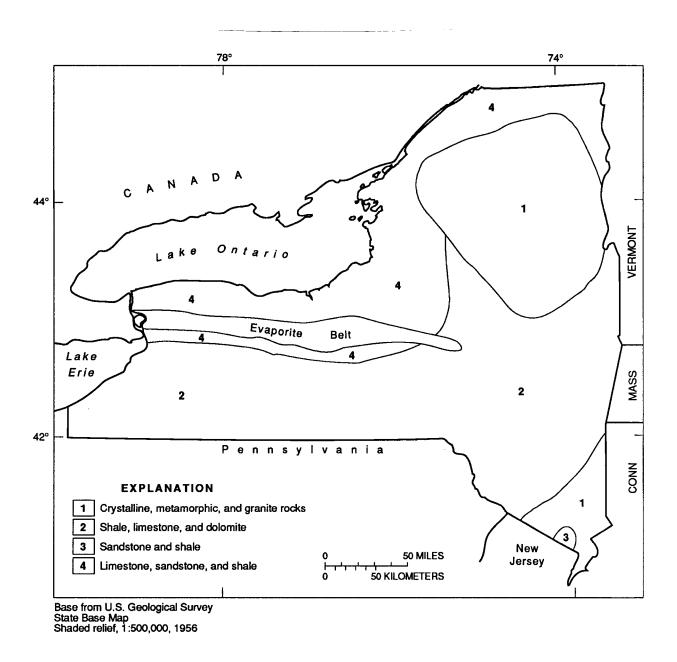


Figure 2.--Distribution of major bedrock types in New York. (Modified from Lyford and others, 1984, fig. 6)

Bedrock in New York (excluding Long Island) is covered with glacial deposits of till and stratified drift of variable thickness. The generalized distribution of soil associations in New York is shown in figure 3. The till mantles the uplands and small tributary valleys and generally is found beneath stratified drift in the larger valleys. Stratified drift forms the floors of large valleys and flat plains or terraces where bedrock relief is low. The stratified drift includes clay, silt, sand, and meltwater deposits of sand and gravel. The sand and gravel deposits form the principal aquifer systems of New York.

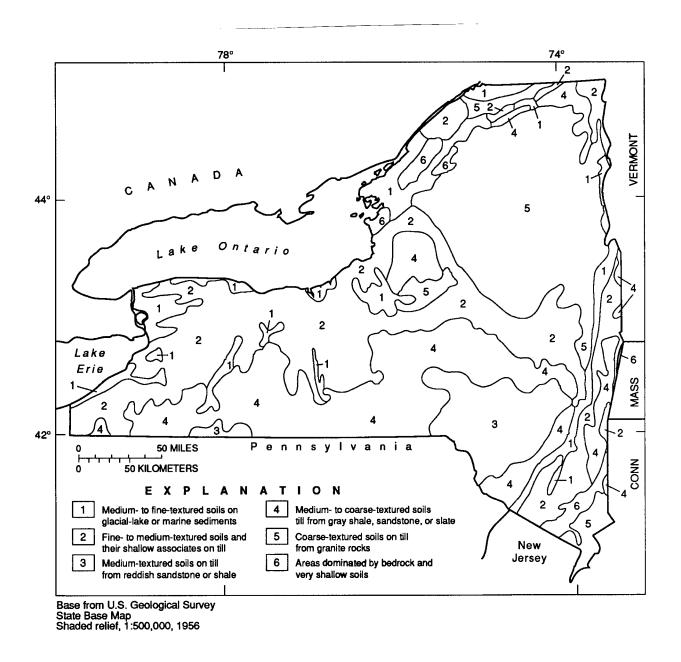


Figure 3.--Generalized distribution of soil associations in New York. (Modified from Cline, 1961, pl. 1.)

Climate

The climate of New York is the humid continental type; cool, dry air masses move generally eastward through the State throughout the year, and warm, humid, maritime tropical air masses from the south move northeastward during the summer. Mean annual precipitation ranges from almost 30 in. along Lakes Ontario and Champlain to about 60 in. in the southern Catskill Mountains (pl. 1).

The areal distribution of precipitation reflects the topographic relief and the general eastward-to-northeastward storm movements. New York has a fairly uniform distribution of precipitation during the year and has no distinct rainy or dry season.

Regional differences in topography, elevation, and proximity to large bodies of water result in a great variation of snowfall throughout the State. Maximum seasonal snowfall, averaging more than 175 in., occurs on the western and southwestern slopes of the Adirondacks and Tug Hill (National Oceanic and Atmospheric Administration, 1980). A secondary maximum of more than 150 in. prevails some 10 to 30 mi inland from Lake Erie. The minimum seasonal snowfalls (25 to 35 in.) occur in extreme southeastern New York, and the minimum upstate snowfalls (40 to 50 in.) occur in the Chemung and mid-Genesee River Valleys and near the Hudson River in Orange, Rockland, and Westchester Counties up to southern Albany County. (Locations are shown on pl. 1). On average, some of the winter snowpack is still unmelted by mid-March over all but the extreme southeastern part of the State. In mid-March, as much as 10 in. of water content can still remain in the snowpack of the Adirondack Mountains and in the highlands to the east of Lake Ontario.

The greatest potential for floods is in the early spring, when substantial rains combine with rapid melting of snow to produce heavy runoff. Almost half of the State's annual runoff occurs from mid-February through mid-May. Local flooding, primarily within smaller drainage basins, is generally caused by summer thunderstorms. Occasionally hurricanes can cause severe flooding, particularly in southeastern parts of the State.

DATA BASE FOR REGRESSION EQUATIONS

The regression equations that provide estimates of the streamflow characteristics in this study were developed from peak-discharge and basin-characteristic data from gaging stations in New York and adjacent States.

Annual Peak-Discharge Records

The flood-frequency analyses for this study are based on annual peak-discharge data collected through September 1987 from 313 continuous-record and partial-record gaging stations (pl. 2). Of these sites, 284 are in New York, and 29 are in adjacent States. Periods of peak-discharge record for these stations range from 10 to 84 years.

Annual peaks from gaging stations having at least 10 consecutive years of unregulated, non-urbanized record were selected for the analysis. If more than 20 percent of the drainage area at a gaging station was upstream from a controlled reservoir, the stream was considered regulated, in accordance with analyses of Zembrzuski and Dunn (1979). Similarly, if more than 15 percent of a site's drainage area was affected by manmade changes (impervious area, channelization, diversions, and so forth), the stream was considered urbanized (Sauer and others, 1983).

The drainage areas of the 313 gaging stations selected for the analysis ranged from 0.41 to 4,773 mi². A list of gaging stations used in the study, as well as selected peak-discharge records, is given in table 8 (at end of report). Much of the information in table 8 was obtained from Robideau and others (1984).

Discharge-Frequency Relations

The discharge-frequency relation of a streamflow-measurement site is usually expressed in terms of exceedance probability, or recurrence interval. Exceedance probability is the probability that a flood of specified magnitude will be equaled or exceeded in any 1 year. Recurrence interval, the reciprocal of

exceedance probability, is the average time interval between occurrences of a flood of equal or greater magnitude. For example, a 100-year flood has a 1-percent chance of occurring in any 1-year period.

The representation of a discharge-frequency relation on a graph is known as a flood-frequency curve; an example is depicted in figure 4. Discharge-frequency relations for each of the 313 gaging stations included in the study were developed by fitting the logarithms of the annual peak-discharges to a Pearson Type III distribution according to guidelines recommended by U.S. Water Resources Council (1981); the resulting data were analyzed by means of U.S. Geological Survey flood-frequency programs (Kirby, 1981). Adjustments to the frequency curves were made to account for historical information and high and low outliers. The coefficient of skewness was estimated as a weighted average of the systematic (station) skew and a generalized map skew (U.S Water Resources Council, 1981). Results of the discharge-frequency analyses for each gaging station are summarized in table 9 (at end of report).

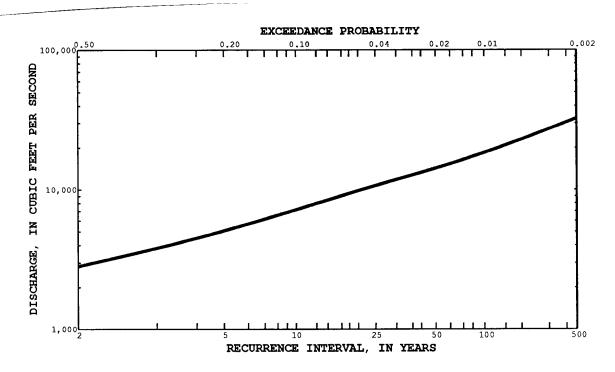


Figure 4.--Flood-frequency curve for Wappinger Creek near Wappingers Falls (station 01372500).

Caution should be exercised in using information from some of the stations listed in table 9 because several of the streams are now regulated. As noted in table 9, all data entries for these streams reflect preregulation periods and are not generally applicable to present conditions.

The boundaries for selected recurrence intervals for five of the most severe floods in New York since 1913 are shown on the maps in figure 5; most streams in the State were ungaged before 1913 (U.S. Geological Survey, in press). Flood severity was evaluated in terms of magnitude, extent, loss of life, and property damage. Of the five floods illustrated, three (1913, 1949, and 1984) were caused by winter/spring storms, and two (1955 and 1972) by summer/fall storms (hurricanes). Figure 6 shows annual peak discharges at eight selected gaging stations in New York. Of note are the occurrences of 100-year floods in two consecutive years (1955-56) at Wallkill River at Gardiner, and no 100-year flood at Schoharie Creek at Prattsville during its 78 years of record. The regions indicated on figure 6 are discussed in the section "Regionalization of Flood-frequency Estimates." The maximum known discharges and associated recurrence intervals for all gaging stations used in the analysis are listed in table 8 (at end of report).

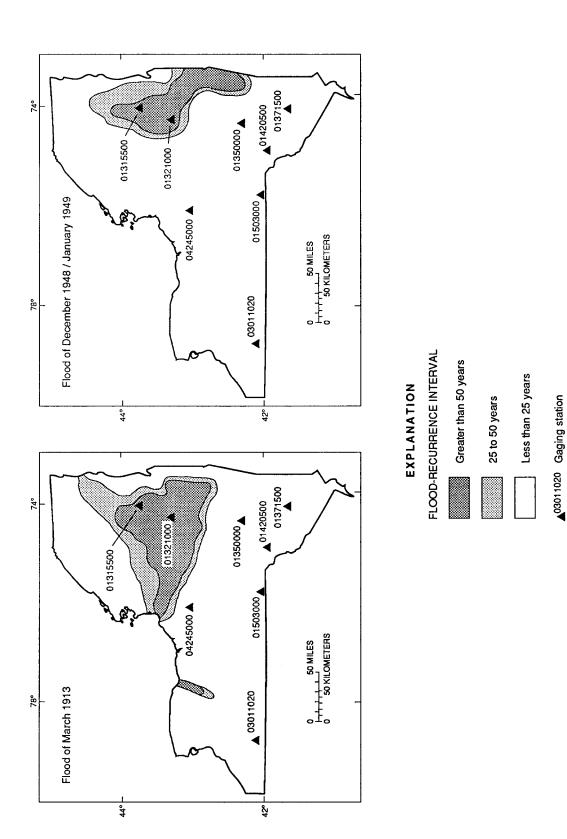


Figure 5.--Flood-boundary delineations for five selected storms, 1913-85. (Station names are given in fig. 6).

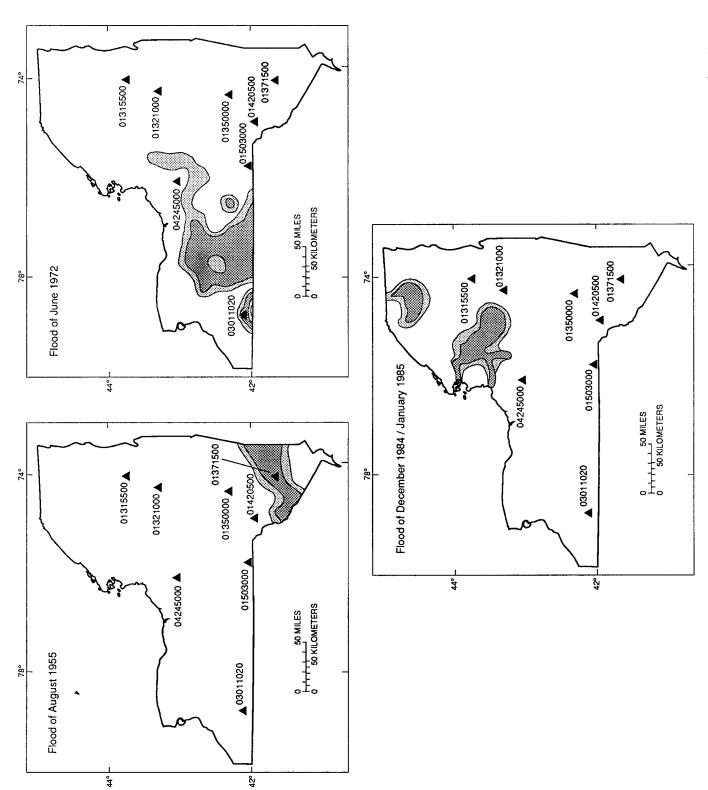


Figure 5 (continued).--Flood-boundary delineations for five selected storms, 1913-85. (Station names are given in fig. 6).

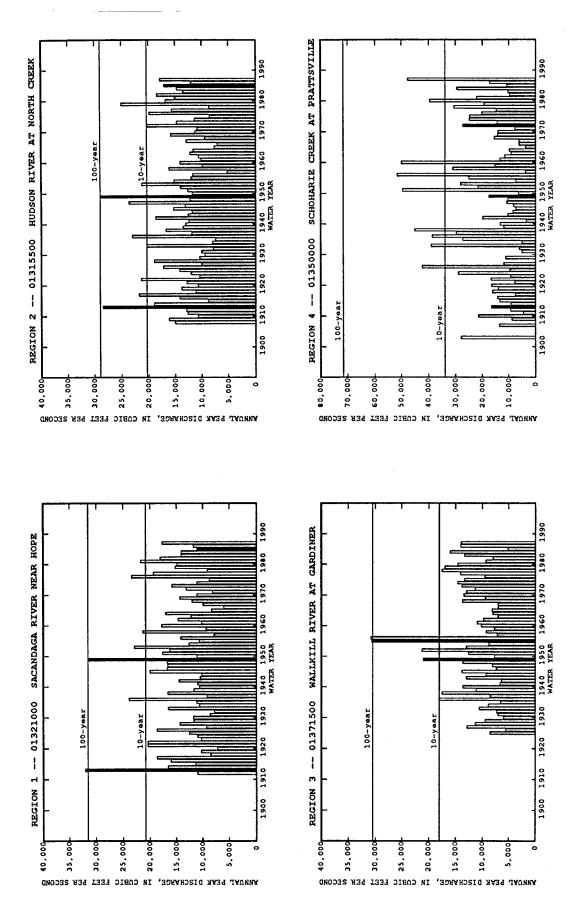


Figure 6.--Annual peak discharges and 10- and 100-year recurrence intervals for selected gaging stations in each of eight hydrologic regions of New York. (Solid bars are annual peaks for the floods indicated in fig. 5; station locations are shown in fig. 5).

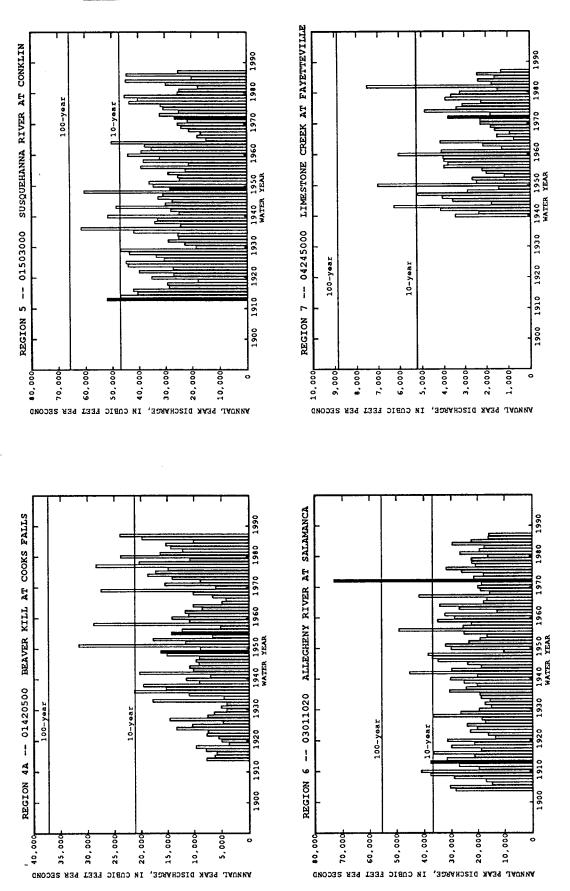


Figure 6 (continued).--Annual peak discharges and 10- and 100-year recurrence intervals for selected gaging stations in each of eight hydrologic regions of New York. (Solid bars are annual peaks for the floods indicated in fig. 5; station locations shown in fig. 5).

Basin Characteristics

To transfer peak-discharge information to ungaged sites, multiple regression analysis was used to relate streamflow characteristics to selected topographic and climatic characteristics for each drainage basin. The following basin characteristics were tested for significance during regression analyses; those with abbreviations are the variables used in the final regression equations:

Drainage area (A), in square miles.—The area of a basin (watershed) upstream from the gage or site of interest delineated on 7.5- or 15-minute U.S. Geological Survey topographic maps and then determined by planimetering or digitizing the basin outline (Wagner, 1982).

Main channel stream length, in miles.—The distance measured along the main stream channel from the gage or point of interest to the drainage divide.

Main channel slope (SL), in feet per mile.--The difference in elevation (feet) between points 10 percent and 85 percent of the distance along the main stream channel from the gage or site of interest to the basin divide, divided by the distance (miles) between the two points.

Basin storage (ST), in percent.—The percentage of the total drainage area shown as lakes, ponds, and swamps as determined from 7.5- or 15-minute topographic maps by grid sampling, planimetering, or digitizing. Some basin storage values used in the study were obtained from the New York State Land Use and Natural Resources (LUNR) Inventory (Zembrzuski and Dunn, 1979).

Mean annual precipitation (P), in inches.—The average value of mean annual precipitation over the basin of interest, determined from plate 1.

Average main stream channel elevation (EL), in feet.—The average of stream-channel elevations at points located 10 percent and 85 percent of the length of the main stream channel from the gage or point of interest to the drainage divide.

Basin forested area (F), in percent.—The percentage of the total drainage area shown as forest cover, as determined from 7.5- or 15-minute topographic maps by grid sampling, planimetering, or digitizing.

Basin shape index (SH), in mile per mile.—The calculated ratio of the square of the main-channel stream length, in miles, to drainage area, in square miles (ratio of basin length to average basin width).

Precipitation intensity, in inches.—The average value of the maximum 24-hour precipitation over the basin with a recurrence interval of 2 years. (From U.S. Department of Commerce, 1961).

January minimum temperature, in degrees Fahrenheit.—The average value of the mean minimum January temperature over the basin, as determined from a National Oceanic and Atmospheric Administration (1980) map.

Mean basin elevation, in feet.—The average elevation of 20 equally spaced points over the basin as measured by a transparent grid from 7.5- or 15-minute topographic maps. This characteristic was tested for a subset of about three-fourths of the study basins.

Water equivalent of snow cover, in inches.--The average value of the mean water equivalent of snow cover over the basin for the first week of March, as determined from a map prepared by the U.S. Geological Survey (unpublished map on file in U.S. Geological Survey office in Albany, N.Y.).

The basin-characteristics data are stored in the U.S. Geological Survey National Water Storage and Retrieval System (WATSTORE) (Dempster, 1983). Selected basin characteristics for the gaging stations used in the analysis are listed in table 10 (at end of report).

REGRESSION ANALYSIS

Multiple regression analysis was used to develop the relations between peak discharges of selected recurrence intervals (dependent variable) and drainage-basin characteristics (explanatory variables). Previous regression analyses for New York used ordinary least squares (OLS) methods (Zembrzuski and

Dunn, 1979). The OLS estimates are appropriate when all onsite flow estimates are equally reliable, the natural variability is the same for each site, and observed concurrent flows at every pair of sites are independent. In practice, the analyst usually does not have such a uniform set of data with which to work.

Recent research by Stedinger and Tasker (1985) and Tasker and Stedinger (1989) indicates that generalized least squares (GLS) may be more appropriate for hydrologic regression than OLS. In this approach, the regression coefficients are estimated by taking into consideration the time-sampling error (length of record at each site) and the cross correlation of annual peak-discharges between sites. The above research has shown that the GLS technique was superior to OLS when streamflow data were cross correlated and(or) of differing record lengths.

In GLS regressions, each watershed in the analysis is weighted in accordance with the variance (time-sampling error) and spatial correlation structure of the streamflow characteristic (annual peak discharges). In addition, the time-sampling error in the streamflow characteristic is accounted for when the accuracy of the regression equation is evaluated. The prediction error for ungaged sites is partitioned into model error (error in assuming an incomplete model form) and sampling error (including both time- and spatial-sampling errors). The model error cannot be reduced by additional data collection, but the sampling error can be reduced through extended operation of existing stations or installation of new stations, or some combination of both.

For the GLS regression analysis used in this study, logarithmic (base 10) transformations were made on all streamflow and basin characteristics to obtain a constant variance of the residuals about the regression line, and to linearize the relation between the dependent variable (peak-discharge) and explanatory variables (basin characteristics) for linear least-squares regression techniques. The multiple-regression equations based on logarithmic transformation of the variables are of the form:

$$\log_{10} Y = b_0 + b_1 \log_{10} X_1 + b_2 \log_{10} X_2 + \dots + b_n \log_{10} X_n$$

or, after taking antilogs,

$$Y = 10^{b_0} (X_1^{b_1}) (X_2^{b_2})....(X_n^{b_n})$$

where:

Y = dependent variable (peak-discharge for selected recurrence interval)

 X_1 to X_n = explanatory variables (basin characteristics)

 b_0 to b_n = regression model coefficients estimated through GLS procedures

Selection of final explanatory variables for each model was based on stepwise regression algorithms and all-possible-subsets regression (SAS Institute, 1982; Minitab, 1985). Final regression equations were selected on the basis of several factors, including: standard error of the estimate, Mallow's Cp statistic, statistical significance of the explanatory variables, r² (coefficient of determination), ease of measurement of explanatory variables, and the PRESS statistic (an index of the prediction error associated with the regression equation). Multicollinearity in the regression models was assessed by the VIF (variance inflation factor) and the correlation between explanatory variables.

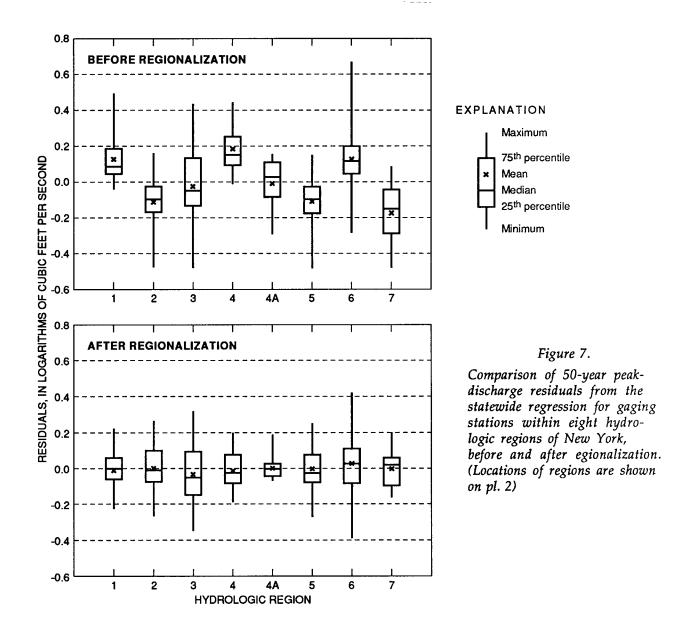
REGIONALIZATION OF FLOOD-FREQUENCY ESTIMATES

Regression analysis provides a means of relating peak discharge to basin characteristics. Variability of the relation between peak discharge and basin characteristics among gaged sites can be reduced by regionalization, a process in which an area is divided into hydrologic regions to account for regional differences in peak-discharge response and in topographic and climatic variables that affect streamflow. Hydrologic regions refer to areas in which streamflow-gaging stations indicate a similarity of peak-discharge response that differs from the peak-discharge response in adjacent regions. These similarities and differences are defined by the regression residuals, which are the differences between the peak discharges calculated from station records and the values computed through the regression equation.

Delineation of Hydrologic Regions

The initial step toward delineating hydrologic regions was to develop a statewide regression equation through OLS(ordinary least-squares) analysis. Significant explanatory variables for the statewide model (equation) included drainage area, main-channel slope, basin storage, mean annual precipitation, and March water-equivalent of snow cover. The dependent variable for the statewide regression was the 50-year peak discharge.

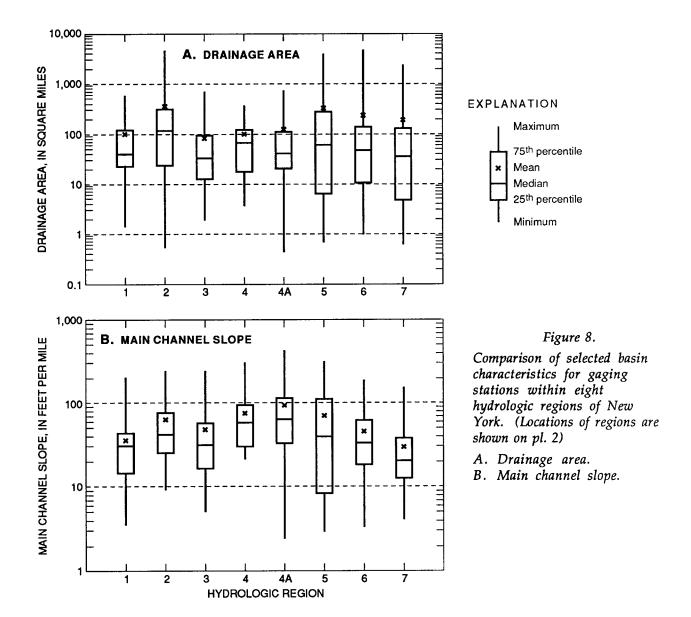
Hydrologic regions within New York were delineated primarily through inspection of the areal distribution of the statewide regression residuals. Regions where the regression equation consistently overestimated or underestimated the peak-discharge response were delineated as separate hydrologic regions, and separate GLS regression equations were developed to estimate peak discharges in each region. (Originally seven regions were delineated for New York, but because residuals for region 4, in the Catskill Mountain area, indicated need for an additional division, region 4 was divided into hydrologic regions 4 and 4A.) Regional differences in geologic and physiographic conditions were also considered during hydrologic-region delineation. Generally, the hydrologic-region boundaries coincide with drainage-basin divides; the resulting delineations are shown on plate 2.


The distribution of regression residuals for each hydrologic region before and after regionalization are shown in box plots in figure 7. The upper plot summarizes the results of the statewide regression and indicates the clustering of residuals within the final eight hydrologic regions before regionalization; the lower plot shows the distribution of the final GLS regression residuals for the eight hydrologic regions of New York. The 50-year peak-discharge was the dependent variable for this analysis.

To further evaluate the delineations of the hydrologic regions, the Wilcoxon Signed Ranks test (Iman and Conover, 1983) was used to compare residuals between regions (Tasker, 1982). This method tests the statistical significance of a cluster of regression residuals. The test hypothesis is that the median residual in a hydrologic region is not significantly different from the median residual for the entire State (which is zero). Delineation of an area as a separate hydrologic region is supported if the test hypothesis is rejected. Results of the test are summarized in table 1.

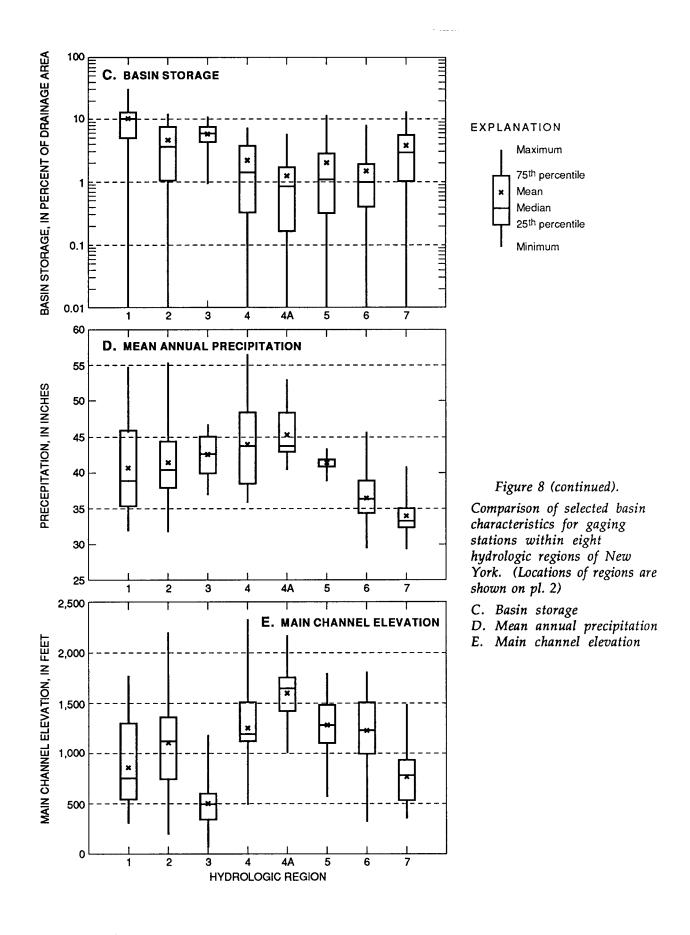
The median residual in six of the eight hydrologic regions was different from zero at a probability level less than 0.001. The median residuals for the other two regions (3 and 4A) were not significantly different from zero, but the sign and magnitude of the residuals, differences in topographic and geologic conditions, and hydrologic judgment indicated delineation of these areas as separate hydrologic regions.

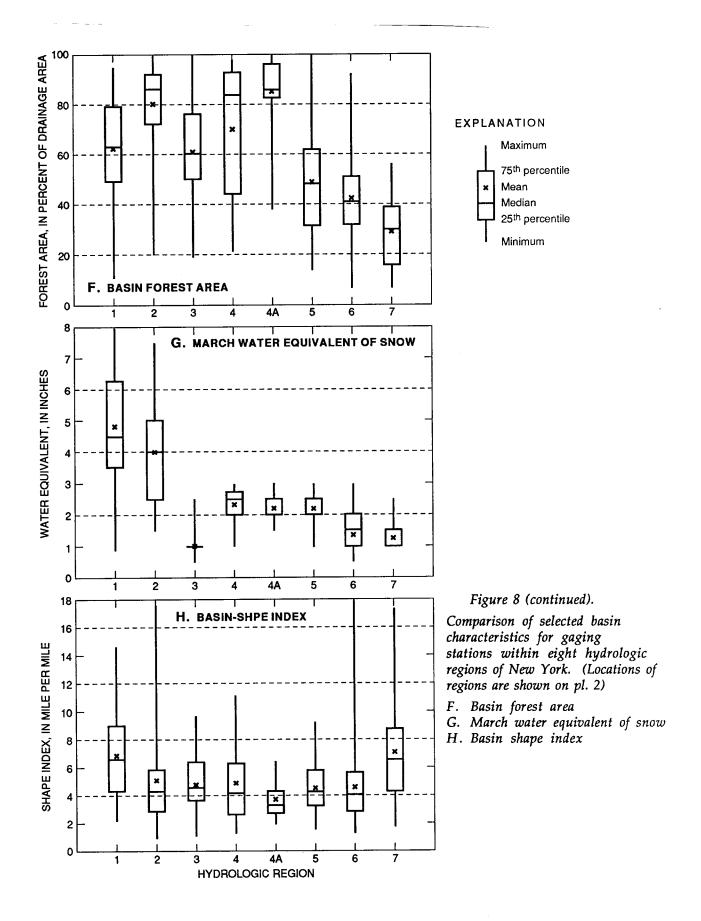
Table 1.--Results of Wilcoxon Signed Ranks test on the 50-year peak-discharge regression residuals for eight hydrologic regions in New York

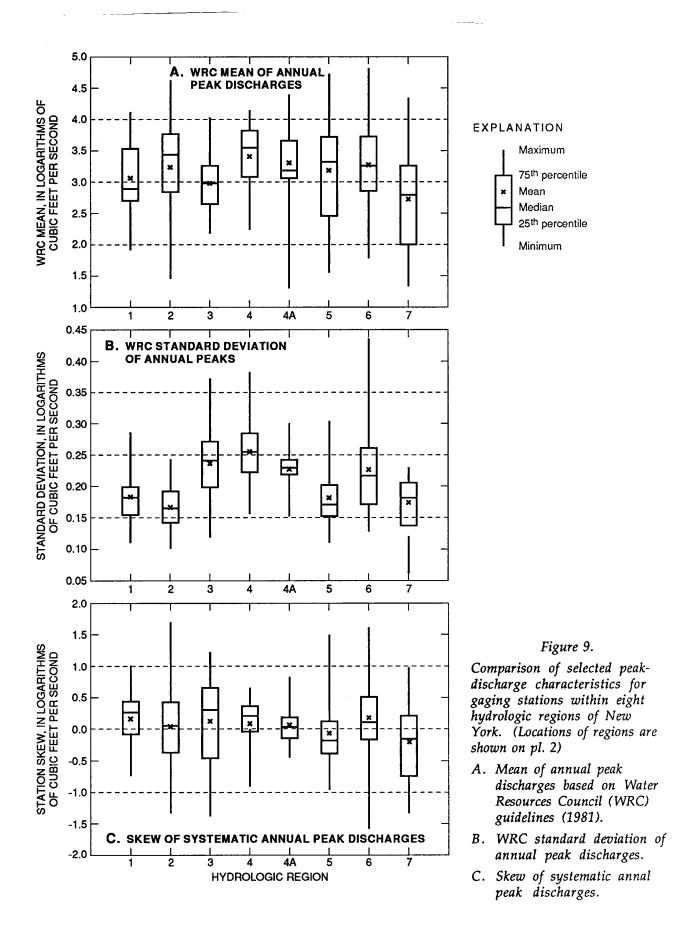

[Hydrologic regions are delineated in pl. 2. < = less than. ft³/s = cubic feet per second.] Observed peak Sum of Sum of Median of positive negative discharge residuals ranks ranks relative to Hydrologic (logarithms of (percent of (percent of predicted peak Probability Number total) total) discharge level of stations region ft^3/s 97 < 0.001 1 +0.0903 High 31 2 7 93 <.001 49 -.102 Low 42 3 39 .218 -.052 61 Low 99 23 4 <.001 +.1511 High 54 17 4A +.02746 High .813 5 11 89 <.001 48 -.090 Low 73 +.11786 14 High <.001 6 7 5 95 Low <.001 30 -.162

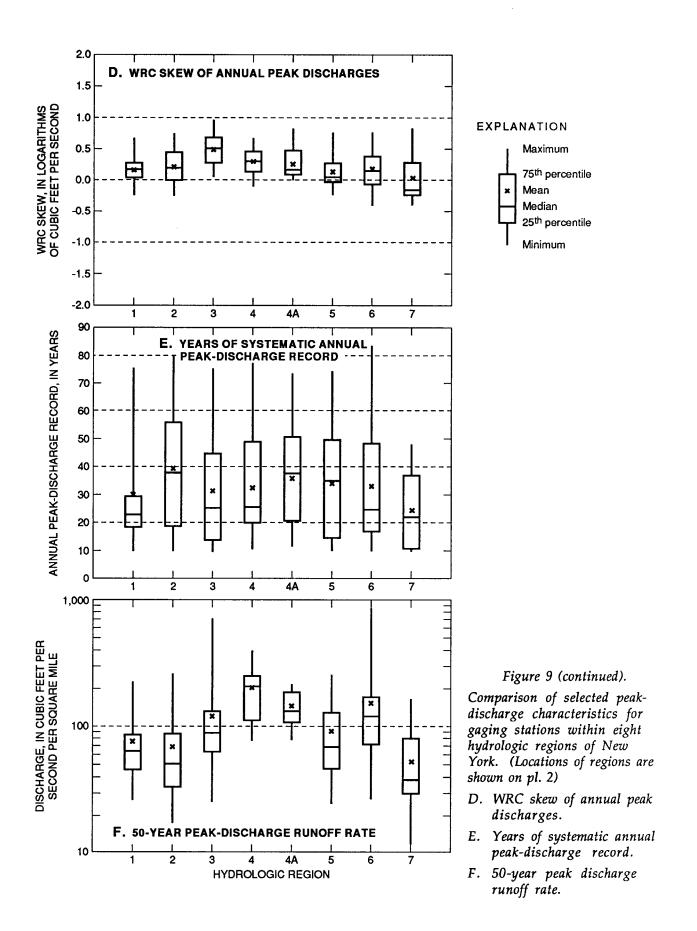
Regional Basin and Peak-Discharge Characteristics

To summarize and evaluate differences between hydrologic regions, basin and peak-discharge characteristics were compared among regions (figs. 8-12). Box plots in figures 8 and 9 summarize regional basin and peak-discharge characteristics, respectively. Explanatory variables from the regional and statewide regressions are included in figure 8; regional statistical summaries of annual peak-discharge data used in the analysis as well as regional 50-year peak-discharge runoff rates are given in figure 9.


Regions 4 and 4A include basins with the greatest main channel slopes (fig. 8B) and mean annual precipitation (fig. 8D), and regions 1 and 3 have the greatest basin-storage values (fig. 8C). Basin-shape index values are greatest for basins in regions 1 and 7 (greater basin elongation); basins in region 4A tend to be rounded, as indicated by the low index values (fig. 8H).




The statistics of annual peak discharges (fig. 9) show that the greatest mean (fig. 9A) and standard deviations (fig. 9B) for basins used in the study are in hydrologic region 4, as is the maximum 50-year peak-discharge runoff rate (fig. 9F). Basins within regions 2 and 4A have the greatest median number of years of annual peak-discharge record, whereas those in regions 1 and 7 have the least (fig. 9E).


The distribution of gaging stations by length of period of annual peak-discharge record and by drainage-area size is shown in figure 10. Region 2 has the most stations with long-term record (greater than 55 years), and region 7 has none (fig. 10A). Region 5 and 6 have the greatest number of stations with drainage areas less than 15 mi², and region 4 had no basins greater than 386 mi² (fig. 10B).

As an indication of the seasonality of floods, a comparison of the monthly frequency of annual peak discharges for each hydrologic region and for New York was made (figs. 11, 12). Most annual peak-discharges for each hydrologic region and for all ranges of drainage area occur in March and April. (Note again that these graphs include data from 29 out-of-State gaging stations.)

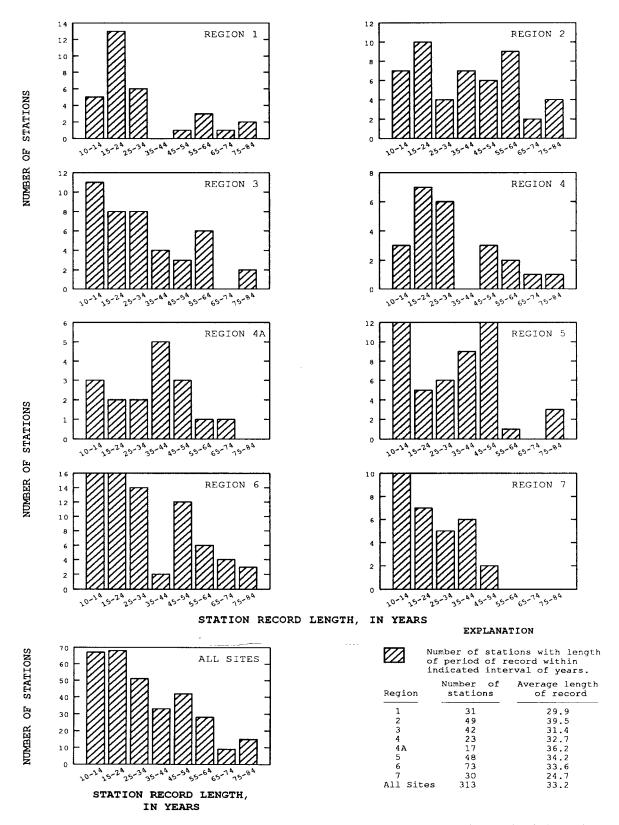


Figure 10A.--Distribution of stations, by length of period of record, within each of the eight hydrologic regions in New York and for all stations combined. (Locations of regions are shown on pl. 2).

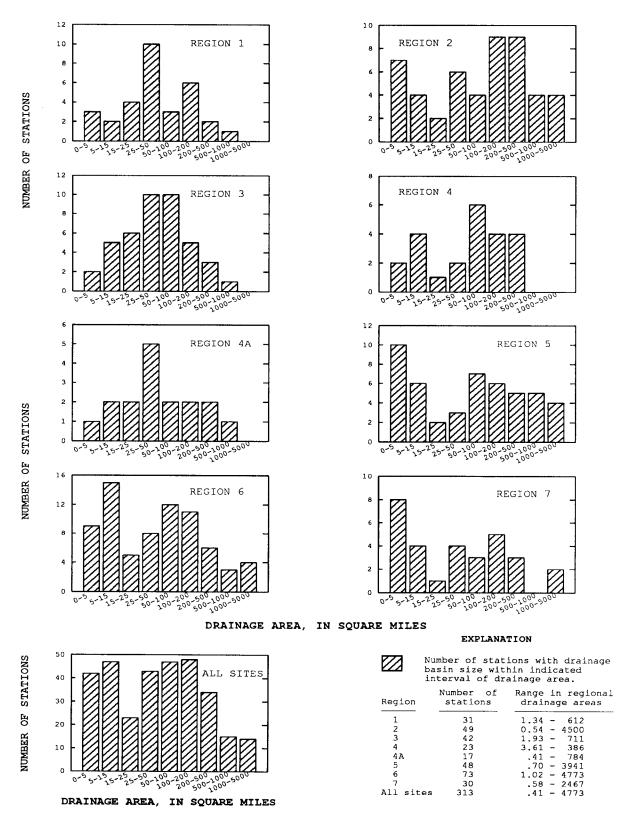


Figure 10B.--Distribution of stations, by drainage-area size, within each of the eight hydrologic regions in New York and for all station combined. (Locations of regions are shown on pl. 2.)

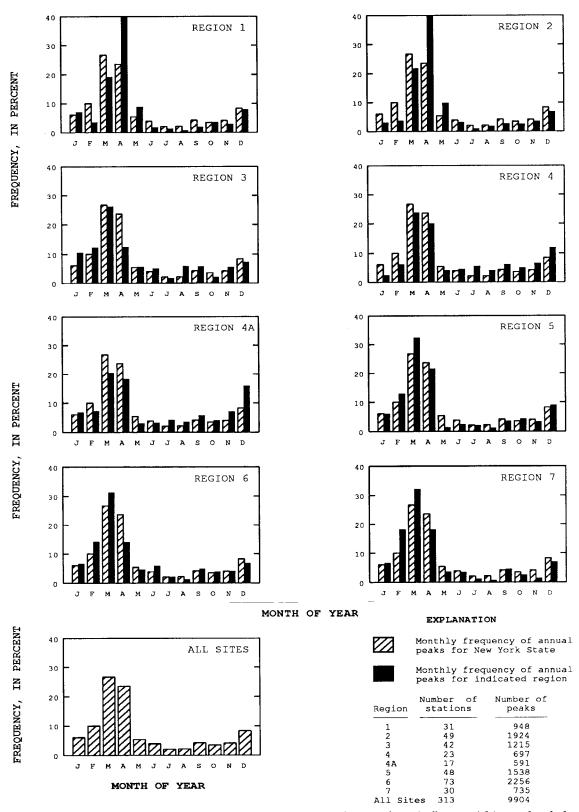


Figure 11.--Comparison of the monthly frequency of annual peak flows within each of the eight hydrologic regions in New York and for all stations combined. (Locations of regions are shown on pl. 2).

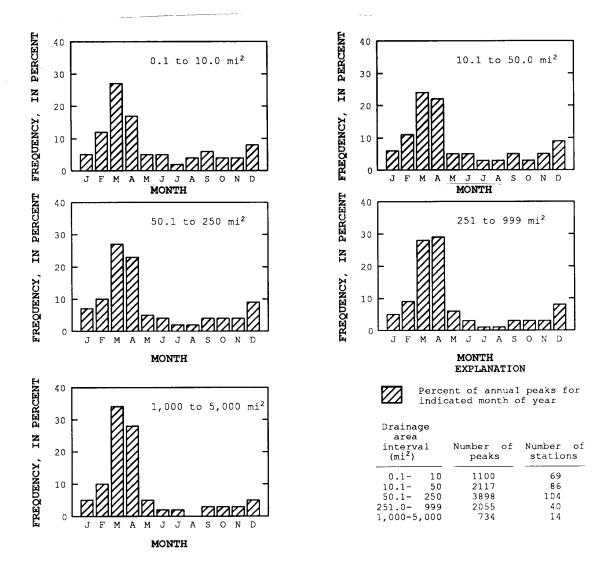


Figure 12.-Monthly frequency of annual peak flows at gaging stations used in the study, for selected drainage-area sizes.

REGIONAL REGRESSIONS

Regression equations were developed for each of the eight hydrologic regions from (1) all statistically significant explanatory variables (full regression equations) and (2) drainage area only. GLS procedures were used for all regional-regression analyses.

Full-Regression Equations

Regression equations to estimate peak discharges with recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years in each of the eight hydrologic regions, developed through GLS procedures, are presented in table 2. Also included in table 2 are estimates of the standard error of prediction and equivalent years of record for each regression equation (Hardison, 1971). The prediction error indicates the expected accuracy of the regression equations when applied to ungaged sites not used in the regression analyses. Peak-discharge estimates for ungaged sites should be within one standard error (of prediction) of the true value about 68 percent of the time. An additional overall measure of predictive ability of the models is the equivalent years of record (table 2). Equivalent years of record is a function

of the average variability and skew of the annual peak-discharge series at sites in a hydrologic region, the accuracy of the regression equation, and the recurrence interval in question (Tasker and Stedinger, 1989). Equivalent years of record represent the number of years of gage data required to achieve results with accuracy comparable to that given by the regression equations. Regression estimates used to determine peak discharge at gaged sites and at ungaged sites near gaged sites are weighted by the equivalent years of record for the equation. (See section "Computations of peak discharge.")

A summary of the full-regression equations is given in table 3 (p. 28). The standard error of estimate for the regional models ranges from 10 to 43 percent. (Standard error of estimate is a measure of how well the sample data fit the relation derived through a regression analysis.) Table 3 also includes statistically significant explanatory variables for the regional equations. Several of the variables require addition or subtraction of constants before the equation is applied. These constants were determined through sensitivity analyses, normality of the distribution of a variable within its region, improvement in standard error of estimate, coefficient of determination (r²), and the PRESS statistic (an index for prediction error).

The equations in table 2 were developed from logs (base 10) of the variables to help linearize the relations. To make the equation useful for prediction requires a detransformation; taking the antilog of the predicted logarithm of peak-discharge results in an estimate of the median response rather than the mean (Choquette, 1988). Biased estimates can result; therefore, a bias-correction factor was computed for each equation in table 2 and is presented in table 4 (p. 28). These factors, which range from 1.005 to 1.088, are based on the standard error of estimate of each equation, and, when the regression estimate is multiplied by the bias-correction factor, the resultant discharge will correspond to the mean value expected for the particular set of variables in question (Koch and Smillie, 1986). The mean value will be a more conservative estimate than the median value in terms of minimizing risk of flood damage. Use of the bias-correction factor is left to the discretion of the user. The factor was not applied to data in any tables or examples used in this report.

The final generalized least squares (GLS) full equations (table 2) were compared with equations previously developed for New York by Zembrzuski and Dunn (1979). The 50-year estimating equation from each study was applied to stations within each of the eight hydrologic regions, and residuals were computed. The sum of the squares of the GLS residuals were in each case significantly less than those derived through the Zembrzuski and Dunn equation, which indicates that the GLS equations are more accurate. As a further comparison of the two sets of equations, observed 50-year peak discharges were plotted against predicted values for stations within each of the eight hydrologic regions computed from both sets of equations (fig. 13A, 13B). The 1979 equations showed significant bias and error for several of the regions (fig. 13A); they gave a general underprediction for sites in hydrologic regions 1 and 4 and a significant overprediction for sites in regions 2, 5, and 7. This bias and error can be attributed to the smaller number of stations, shorter periods of record, and the use of only three hydrologic regions in the 1979 study. The GLS results from this study (fig. 13B) are based on improved statistical methods that were unavailable during the 1979 work and indicate no significant bias and less error.

Drainage-Area-Only Equations

Alternative GLS regression equations for each of the eight hydrologic regions that contain only the most significant basin characteristic (drainage area) and have higher standard errors than the GLS full-regression equations are given in table 5 (p. 29). An indication of their accuracy is shown in figure 13C. The observed and predicted 50-year peak discharges are given for the drainage-area-only equations (table 5) and also for the GLS full-regression equations (table 2) for comparison. The illustration shows no significant bias for the drainage-area-only relations, but generally more error. Bias-correction factors, standard errors of prediction, and equivalent years of record are included in table 5.

The drainage-area-only equations (table 5) are intended to provide estimates of peak discharges that are easier to calculate, although less accurate, than those computed by the full equations. The drainage-area exponents for each region (table 5) can be useful in transferring peak-discharge information upstream or downstream from a gaged site according to the ratio of the ungaged site's drainage area to the gaged site's drainage area, raised to the exponent power (Wandle, 1983).

Table 2.--Full-regression equations for estimating peak discharges for streams in each of eight hydrologic regions of New York.

[A = Drainage area, in square miles, SL = main channel slope, in feet per mile, ST = basin storage, in percent, P = mean annual precipitation, in inches, F = basin forested area, in percent, EL = average main stream channel elevation, in feet, and, SH = basin-shape index, in mile per mile. Region locations are shown on pl. 2]

	Standard error of	
Regression equation	prediction (percent)	Equivalent years of record
negression equation	(percent)	years or record
REGION 1	_	
$Q_2 = 34.9(A)^{0.909} (ST+5)^{-0.489} (P-20)^{1.047} (F+10)^{-0.420}$	21.1	4
$Q_5 = 84.4(A)^{0.890} (ST+5)^{-0.513} (P-20)^{0.984} (F+10)^{-0.466}$	20.9	6
$Q_{10} = 130.(A)^{0.881} (ST+5)^{-0.526} (P-20)^{0.961} (F+10)^{-0.490}$	21.2	8
$Q_{25} = 197.(A)^{0.872} (ST+5)^{-0.538} (P-20)^{0.937} (F+10)^{-0.506}$	22.2	11
$Q_{50} = 250.(A)^{0.868} (ST+5)^{-0.544} (P-20)^{0.919} (F+10)^{-0.510}$	23.4	12
$Q_{100} = 306.(A)^{0.864} (ST+5)^{-0.548} (P-20)^{0.899} (F+10)^{-0.508}$	24.7	13
$Q_{500} = 441.(A)^{0.858} (ST+5)^{-0.553} (P-20)^{0.853} (F+10)^{-0.496}$	27.2	16
REGION 2		
$Q_2 = 3.87(A)^{0.905} (SL)^{0.260} (ST+1)^{-0.160} (P-20)^{0.976} (EL)^{-0.219}$	25.4	2
$Q_5 = 7.09(A)^{0.896} (SL)^{0.257} (ST+1)^{-0.189} (P-20)^{1.000} (EL)^{-0.255}$	25.4	3
$Q_{10} = 9.77(A)^{0.891} \text{ (SL)}^{0.251} \text{ (ST+1)}^{-0.209} \text{ (P-20)}^{1.019} \text{ (EL)}^{-0.273}$	25.5	5
$Q_{25} = 13.5(A)^{0.888} (SL)^{0.242} (ST+1)^{-0.236} (P-20)^{1.046} (EL)^{-0.291}$	26.4	6
$Q_{50} = 16.3(A)^{0.887} (SL)^{0.236} (ST+1)^{-0.256} (P-20)^{1.066} (EL)^{-0.302}$	27.3	8
$Q_{100} = 19.1(A)^{0.887} (SL)^{0.230} (ST+1)^{-0.275} (P-20)^{1.086} (EL)^{-0.311}$	28.6	9
$Q_{500} = 25.6(A)^{0.889}$ (SL) ^{0.218} (ST+1) ^{-0.318} (P-20) ^{1.134} (EL) ^{-0.327}	30.6	11
REGION 3		
$Q_2 = 45.6(A)^{0.723} (ST+1)^{-0.390} (P-20)^{0.491} (SH)^{-0.273}$	30.7	3
$Q_5 = 33.0(A)^{0.718} (ST+1)^{-0.405} (P-20)^{0.806} (SH)^{-0.347}$	32.5	6
$Q_{10} = 29.2(A)^{0.717} (ST+1)^{-0.424} (P-20)^{0.977} (SH)^{-0.401}$	34.6	8
$Q_{25} = 27.4(A)^{0.717} (ST+1)^{-0.452} (P-20)^{1.155} (SH)^{-0.470}$	37.9	10
$Q_{50} = 27.5(A)^{0.717} (ST+1)^{-0.475} (P-20)^{1.263} (SH)^{-0.521}$	40.6	11
$Q_{100} = 28.5(A)^{0.718} (ST+1)^{-0.499} (P-20)^{1.354} (SH)^{-0.571}$	43.6	12
$Q_{500} = 33.1(A)^{0.722} (ST+1)^{-0.557} (P-20)^{1.529} (SH)^{-0.682}$	50.9	14
REGION 4		
$Q_2 = 14.1(A)^{0.880} (ST+1)^{-0.225} (P-20)^{0.614}$	26.4	5
$Q_5 = 17.2(A)^{0.852} (ST+1)^{-0.294} (P-20)^{0.771}$	24.0	10
$O_{10} = 19.6(A)^{0.835} (ST+1)^{-0.335} (P-20)^{0.853}$	24.3	14
$Q_{25} = 22.3(A)^{0.816} (ST+1)^{-0.381} (P-20)^{0.948}$	25.5	18
$Q_{50} = 24.0(A)^{0.804} (ST+1)^{-0.410} (P-20)^{1.014}$	27.0	21
$Q_{100} = 25.3(A)^{0.794} (ST+1)^{-0.435} (P-20)^{1.075}$	28.9	23
$Q_{500} = 27.5(A)^{0.774} (ST+1)^{-0.482} (P-20)^{1.205}$	33.6	25

Table 2.--Full-regression equations for estimating peak discharges for streams in each of eight hydrologic regions of New York (continued).

[A = Drainage area, in square miles, SL = main channel slope, in feet per mile, ST = basin storage, in percent, P = mean annual precipitation, in inches, F = basin forested area, in percent, EL = average main stream channel elevation, in feet, and, SH = basin-shape index, in mile per mile. Region locations are shown on pl. 2]

	Standard error of		
	prediction	Equivalent	
Regression equation	(percent)	years of record	
REGION 4A			
$Q_2 = 2.09(A)^{0.904} (P-20)^{1.051}$	18.3	8	
$Q_5 = 2.18(A)^{0.879} (P-20)^{1.207}$	17.4	14	
$Q_{10} = 2.35(A)^{0.865} (P-20)^{1.278}$	16.9	21	
$Q_{25} = 2.55(A)^{0.850} (P-20)^{1.354}$	16.7	32	
$Q_{50} = 2.64(A)^{0.841} (P-20)^{1.407}$	16.7	41	
$Q_{100} = 2.68(A)^{0.833} (P-20)^{1.459}$	16.9	51	
$Q_{500} = 2.62(A)^{0.821} (P-20)^{1.574}$	17.4	72	
REGION 5			
$Q_2 = 20.3(A)^{0.971} (SL)^{0.232} (ST+1)^{-0.176} (SH)^{-0.093}$	29.3	2	
$Q_5 = 26.4(A)^{0.979} (SL)^{0.272} (ST+1)^{-0.189} (SH)^{-0.130}$	27.2	4	
$Q_{10} = 30.2(A)^{0.981} (SL)^{0.295} (ST+1)^{-0.196} (SH)^{-0.141}$	26.5	6	
$Q_{25} = 35.2(A)^{0.980} (SL)^{0.316} (ST+1)^{-0.204} (SH)^{-0.147}$	26.2	8	
$Q_{50} = 39.2(A)^{0.978} (SL)^{0.329} (ST+1)^{-0.211} (SH)^{-0.150}$	26.4	10	
$Q_{100} = 43.4(A)^{0.976} (SL)^{0.339} (ST+1)^{-0.217} (SH)^{-0.152}$	26.9	12	
$Q_{500} = 53.5(A)^{0.972} (SL)^{0.357} (ST+1)^{-0.231} (SH)^{-0.158}$	29.0	14	
REGION 6			
$Q_2 = 8.80(A)^{0.870} (SL)^{0.233} (ST+1)^{-0.217} (P-20)^{0.481}$	38.3	2	
$Q_5 = 13.3(A)^{0.869} (SL)^{0.302} (ST+1)^{-0.216} (P-20)^{0.408}$	33.6	3	
$Q_{10} = 16.2(A)^{0.869} (SL)^{0.334} (ST+1)^{-0.217} (P-20)^{0.379}$	32.4	5	
$Q_{25} = 19.7(A)^{0.869} (SL)^{0.360} (ST+1)^{-0.220} (P-20)^{0.360}$	32.8	7	
$Q_{50} = 22.1(A)^{0.869} (SL)^{0.374} (ST+1)^{-0.224} (P-20)^{0.356}$	34.1	9	
$Q_{100} = 24.1(A)^{0.870} \text{ (SL)}^{0.385} \text{ (ST+1)}^{-0.228} \text{ (P-20)}^{0.359}$	36.0	9	
$Q_{500} = 27.5(A)^{0.872} (SL)^{0.406} (ST+1)^{-0.244} (P-20)^{0.380}$	42.1	10	
REGION 7			
$Q_2 = 92.3(A)^{0.998} (SL)^{0.460} (ST+1)^{-0.311} (P-20)^{0.737} (EL)^{-0.755} (SH)^{0.243}$	30.4	2	
$Q_5 = 98.7(A)^{1.005} (SL)^{0.509} (ST+1)^{-0.311} (P-20)^{0.829} (EL)^{-0.784} (SH)^{0.267}$	28.4	3	
$Q_{10} = 94.5(A)^{1.009} (SL)^{0.528} (ST+1)^{-0.312} (P-20)^{0.892} (EL)^{-0.788} (SH)^{0.275}$	28.1	4	
$Q_{25} = 83.7(A)^{1.014} (SL)^{0.543} (ST+1)^{-0.312} (P-20)^{0.964} (EL)^{-0.781} (SH)^{0.281}$	28.9	5	
$O_{50} = 74.5(A)^{1.019} (SL)^{0.550} (ST+1)^{-0.313} (P-20)^{1.011} (EL)^{-0.770} (SH)^{0.282}$	30.0	6	
$O_{100} = 65.6(A)^{1.024} (SL)^{0.555} (ST+1)^{-0.313} (P-20)^{1.054} (EL)^{-0.758} (SH)^{0.283}$	31.6	7	
$Q_{500} = 48.4(A)^{1.038} \text{ (SL)}^{0.568} \text{ (ST+1)}^{-0.313} \text{ (P-20)}^{1.148} \text{ (EL)}^{-0.730} \text{ (SH)}^{0.281}$	36.2	7	

Table 3.--Summary of full-regression equations (table 2) for estimating peak discharges in New York, based on information from GLS regression models for estimating 2, 5, 10, 25, 50, 100, and 500-year peak discharges.

[Locations of hydrologic regions are shown on pl. 2]

Hydrologic region	Explanatory variables ¹	Standard error of the estimate (percent)	Estimated standard error of prediction (percent)	Number of gaging stations
1	A, (ST+5), (P-20), (F+10)	18 - 22	21 - 27	31
2	A, SL, (ST+1), (P-20), EL	23 - 27	25 - 31	49
3	A, (ST+1), (P-20), SH	28 - 43	31 - 51	42
4	A, (ST+1), (P-20)	20 - 25	24 - 34	23
4A	A, (P-20)	10 - 16	17 - 18	17
5	A, SL, (ST+1), SH	24 - 27	26 - 29	48
6	A, SL, (ST+1), (P-20)	30 - 39	32 - 42	73
7	A, SL, (ST+1), (P-20), EL, SH	24 - 30	28 - 36	30

¹ A = drainage area of the basin, in square miles.

Several of these variables require a constant value to be added or subtracted before discharge computation (for example, for each equation with mean annual precipitation (P) included as a significant explanatory variable, a constant of 20 should be subtracted from the plate 1 value of P before computations).

Table 4.---Correction factors to adjust regional full-regression equations for transformation bias.

[Full-regression equations are given in table 2. Locations of hydrologic regions are shown in pl. 2.].

Recurrence interval		•		Hydrolog	ic Region			
(years)	1	2	3	4	4A	5	6	7
2	1.017	1.027	1.038	1.026	1.012	1.037	1.064	1.034
5	1.016	1.027	1.041	1.020	1.010	1.031	1.049	1.029
10	1.016	1.027	1.045	1.019	1.009	1.029	1.045	1.028
25	1.017	1.028	1.052	1.020	1.008	1.028	1.046	1.029
50	1.019	1.030	1.059	1.021	1.007	1.028	1.049	1.031
100	1.021	1.032	1.067	1.024	1.006	1.028	1.054	1.033
500	1.024	1.036	1.088	1.032	1.005	1.032	1.073	1.043

SL = main-channel slope, in feet per mile.

ST = basin storage, in percent of total basin drainage area.

P = mean annual precipitation, in inches.

F = basin forest cover, in percent of total basin drainage area.

EL = average main-channel elevation, in feet.

SH = basin shape index, in mile per mile.

Table 5.--Regional flood-frequency equations based on drainage area only.

[Full equations are given in table 2. Region locations are shown in pl. 2]

Regression equation	Bias Correction factor	Standard error of prediction (percent)	Equivalent years of record	Regression equation	Bias Correction factor	Standard error of prediction (percent)	Equivalent years of record
	REGION 1	N1			REGION 2	N 2	
$Q_2 = 48.9(A)^{0.841}$	1.084	43.6	-	$Q_2 = 51.4(A)^{0.816}$	1.073	40.1	₽-4
$Q_5 = 76.8(A)^{0.818}$	1.079	42.5	2	$Q_5 = 75.9(A)^{0.803}$	1.074	40.2	F
$Q_{10} = 96.9(A)^{0.809}$	1.076	41.7	2	$Q_{10} = 93.4(A)^{0.796}$	1.074	40.5	2
$Q_{25} = 124.(A)^{0.801}$	1.073	41.0	ဇ	$Q_{25} = 116.(A)^{0.789}$	1.076	41.2	ю
$Q_{50} = 145.(A)^{0.797}$	1.072	40.8	4	$Q_{50} = 134.(A)^{0.786}$	1.078	41.7	ო
$Q_{100} = 167.(A)^{0.794}$	1.071	40.8	S	$Q_{100} = 152.(A)^{0.783}$	1.079	42.2	4
$Q_{500} = 221.(A)^{0.789}$	1.072	41.4	7	$Q_{500} = 194.(A)^{0.778}$	1.083	43.4	9
	REGION 3	N3			REGION 4	4 N	
$Q_2 = 75.5(A)^{0.700}$	1.056	35.5	2	$Q_2 = 68.3(A)^{0.914}$	1.057	36.5	E
$Q_5 = 127.(A)^{0.687}$	1.056	36.0	4	$Q_5 = 126.(A)^{0.887}$	1.059	37.5	4
$Q_{10} = 167.(A)^{0.686}$	1.060	37.5	9	$Q_{10} = 178.(A)^{0.872}$	1.063	39.3	Ŋ
$Q_{25} = 225.(A)^{0.687}$	1.067	40.0	∞	$Q_{25} = 259.(A)^{0.856}$	1.072	42.3	7
$Q_{50} = 273.(A)^{0.689}$	1.073	42.2	6	$Q_{50} = 330.(A)^{0.846}$	1.079	44.8	∞
$Q_{100} = 326.(A)^{0.691}$	1.080	44.3	11	$Q_{100} = 410.(A)^{0.839}$	1.087	47.3	6
$Q_{500} = 466.(A)^{0.698}$	1.098	50.0	13	$Q_{500} = 630.(A)^{0.827}$	1.108	53.4	10

Table 5.--Regional flood-frequency equations based on drainage area only (continued).

[Full equations are given in table 2. Region locations are shown in pl. 2]

Regression equation	Bias Correction factor	Standard error of prediction (percent)	Equivalent years of record	Regression equation	Bias Correction factor	Standard error of prediction (percent)	Equivalent years of record
	REGION 4A	N.4A			REGION 5	N 5	
$Q_2 = 58.2(A)^{0.921}$	1.021	22.7	Ŋ	$Q_2 = 67.0(A)^{0.800}$	1.053	34.1	2
$Q_5 = 100.(A)^{0.898}$	1.019	22.0	6	$Q_5 = 105.(A)^{0.777}$	1.053	34.1	2
$Q_{10} = 136.(A)^{0.883}$	1.016	20.4	15	$Q_{10} = 135.(A)^{0.764}$	1.053	34.4	က
$Q_{25} = 191.(A)^{0.866}$	1.013	19.4	24	$Q_{25} = 178.(A)^{0.748}$	1.055	35.2	Ŋ
$Q_{50} = 237.(A)^{0.855}$	1.012	19.0	32	$Q_{50} = 212.(A)^{0.738}$	1.057	35.9	9
$Q_{100} = 288.(A)^{0.846}$	1.011	18.7	42	$Q_{100} = 249.(A)^{0.728}$	1.059	36.8	9
$Q_{500} = 422.(A)^{0.830}$	1.011	20.3	53	$Q_{500} = 341.(A)^{0.710}$	1.064	38.4	8
	REGION 6	9 N 6			REGION 7	^ Z	
$Q_2 = 90.5(A)^{0.783}$	1.088	43.9	.	$Q_2 = 34.1(A)^{0.828}$	1.117	52.2	1
$Q_5 = 157.(A)^{0.755}$	1.077	41.3	2	$Q_5 = 47.8(A)^{0.829}$	1.121	53.1	
$Q_{10} = 207.(A)^{0.742}$	1.077	41.4	ဇ	$Q_{10} = 57.0(A)^{0.831}$	1.126	54.4	1
$Q_{25} = 274.(A)^{0.730}$	1.083	43.2	4	$Q_{25} = 68.4(A)^{0.834}$	1.134	56.3	2
$Q_{50} = 326.(A)^{0.724}$	1.091	45.3	S	$Q_{50} = 76.8(A)^{0.837}$	1.140	57.8	2
$Q_{100} = 379.(A)^{0.719}$	1.101	47.9	9	$Q_{100} = 85.1(A)^{0.841}$	1.147	59.4	2
$Q_{500} = 508.(A)^{0.712}$	1.132	55.2	9	$Q_{500} = 103.(A)^{0.849}$	1.163	63.3	3

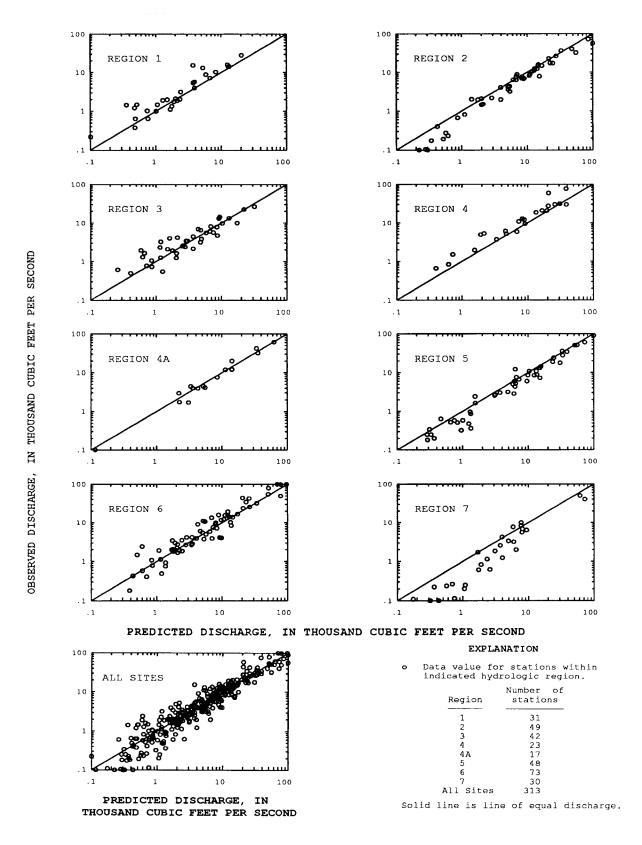


Figure 13A.--Observed 50-year discharges and 50-year discharges predicted from equations of Zembrzuski and Dunn (1979) for stations within the eight hydrologic regions of New York. (Locations of regions are shown on pl. 2.)

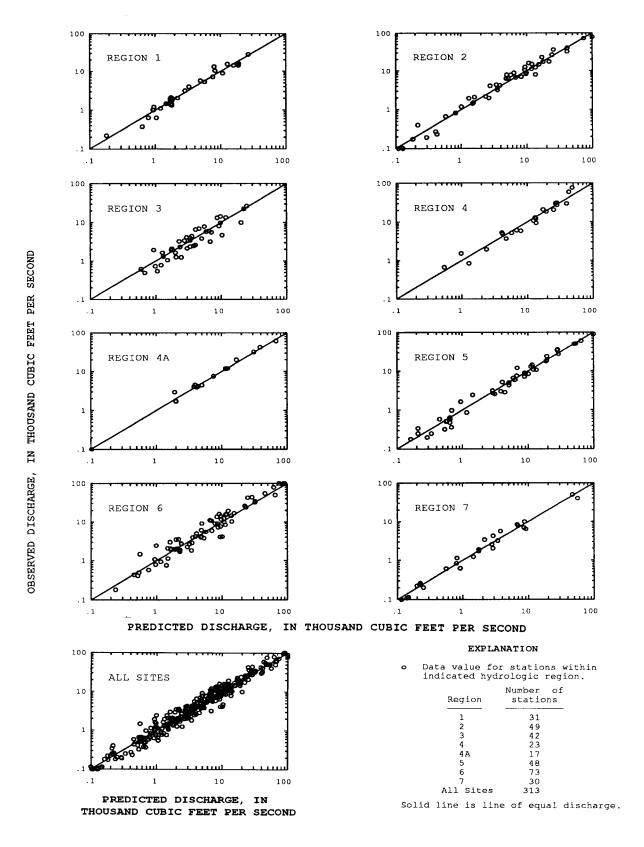


Figure 13B.--Observed 50-year discharges and 50-year discharges predicted from GLS (generalized least squares) full regression equations for stations within the eight hydrologic regions of New York. (Locations of regions are shown on pl. 2.)

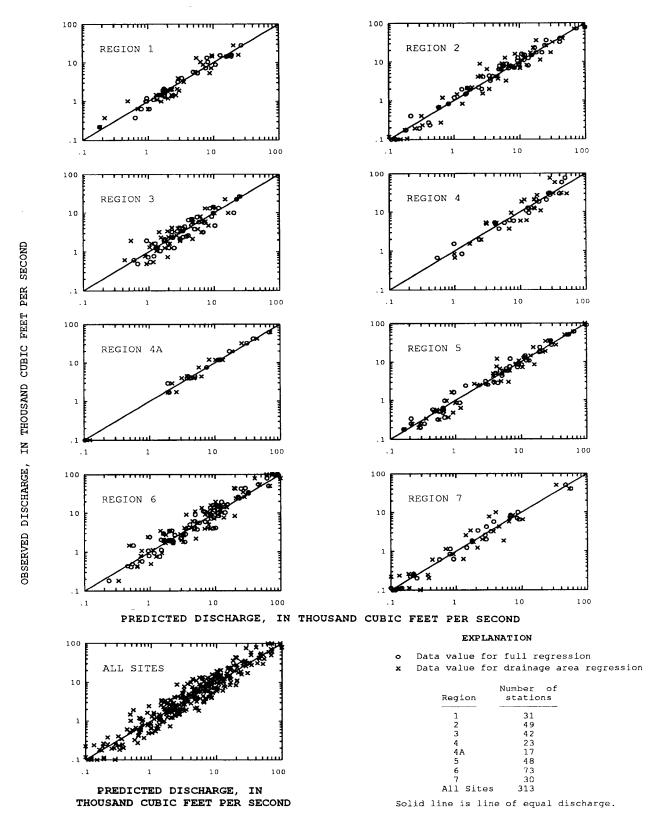


Figure 13C.--Observed 50-year discharges and 50-year discharges predicted from full- and drainagearea-only GLS (generalized least squares) regression equations for stations within the eight hydrologic regions of New York. (Locations of regions are shown on pl. 2.)

COMPUTATION OF PEAK DISCHARGE

Methods for computing a peak discharge for a selected recurrence interval at a specific site depend on whether the site is gaged or ungaged and whether the drainage area crosses hydrologic-region boundaries or State lines. Methods for gaged and ungaged sites are given below with examples of each technique.

Gaged Sites

The GLS regional-regression equations can be used to improve gaging-station estimates (based on flood-frequency analysis of the gaged record) by using a weighted average of the two estimates (regression and gaged). Incorporating the regression estimate into the weighted average tends to decrease time sampling errors that result for sites with short periods of record. The station number, peak-discharge statistics, and gaged, regression, and weighted flood-frequency values for gaging stations used in the study are given in table 9 (at end of report). The weighted discharges generally give the best estimate.

The weighted average discharge is computed from the equation,

$$Q_{T(w)} = \frac{Q_{T(g)}(N) + Q_{T(f)}(E)}{N + E}$$

where:

 $Q_{\Gamma(w)}$ = weighted peak discharge, in ft³/s, for the T-year recurrence interval;

 $Q_{T(g)}$ = peak discharge at gage, in ft³/s, calculated through frequency analysis (log-Pearson Type III) of the station's peak discharge record, for the T-year recurrence interval;

N = number of years of annual peak-discharge record used to calculate $Q_{T(g)}$ at the gaging station;

 $Q_{T(r)}$ = regional regression estimate of the peak discharge, in ft^3/s , for the T-year recurrence interval; and

E = average equivalent years of record associated with the regression equation (table 2) that was used to calculate $Q_{T(r)}$.

Ungaged Sites

The following methods may be used to estimate peak discharges of selected recurrence intervals for sites on ungaged streams, depending on whether (1) the drainage area is within a single hydrologic region, (2) the drainage area crosses a hydrologic-region boundary or State boundary, or (3) the ungaged site is near a gaged site on the same stream. Procedures for each of these conditions are described below:

- (1) If the drainage area of an ungaged site lies entirely within a single hydrologic region (pl. 2), peak discharges for selected recurrence intervals are computed from the regression equations (table 2) for that region.
- (2) If the drainage area of an ungaged site crosses a hydrologic-region boundary or State boundary, the percentage of drainage within each region and(or) State is determined. Peak-discharge estimates are computed for the entire drainage basin through each of the appropriate regional or State equations, and the drainage-area percentages are used as weighting factors by multiplying the percentages by the corresponding peak-discharge estimate; the resulting values are then summed to compute the peak discharge for the entire basin. Out-of-state equations are given in U.S. Geological Survey or State flood-frequency reports for New Jersey (Stankowski, 1974 with update by R. Schopp in progress), Pennsylvania (Flippo, 1977), Connecticut (Weiss, 1983), Massachusetts (Wandle, 1983), and Vermont (Johnson and Tasker, 1974).
- (3) If the ungaged site for which flood-frequency estimates are needed is on a gaged stream, and if the site's drainage area is between 50 and 150 percent of the drainage area of the stream at the gage, the following procedure (Choquette, 1988) is suggested:

- (a) Estimate the peak discharge $(Q_{T(w)})$ at the gaged site by the procedure given in the preceding section, "Gaged Sites."
- (b) Compute the following ratio for the gaged site, as follows:

$$C_g = Q_{T(w)} / Q_{T(r)}$$

where:

 C_g = correction-factor ratio for the gaged site,

 $Q_{T(w)}$ = weighted peak-discharge estimate for the gaged site; and

 $Q_{T(r)}$ = regression peak-discharge estimate for the gaged site.

(c) Compute the following ratio for the ungaged site:

$$C_u = C_g - [2(|A_g - A_u|)/A_g](C_g-1)$$

where:

 C_u = correction factor ratio for the ungaged site,

C_g = correction factor ratio for the gaged site, A_g = drainage area of the gaged site,

 A_u = drainage area of the ungaged site (must be within 50 and 150 percent of the

drainage area at the gaged site), and

 $|A_g - A_u|$ = absolute value of the difference between drainage areas for the gaged and ungaged

sites.

(d) Compute the weighted peak-discharge estimate at the ungaged site, as follows:

$$Q_{T(w)} = C_u(Q_{T(r)}),$$

where:

 $Q_{T(w)}$ = weighted peak-discharge estimate for the ungaged site,

 C_u = correction factor ratio for the ungaged site, and

 $Q_{T(r)}$ = regression peak-discharge estimate for the ungaged site.

As the difference in drainage area between the gaged site and the ungaged site approaches either 50 or 150 percent of the drainage area at the gaged site, the value of C_u approaches 1, in which case the adjustment has no effect on the regression estimate for the ungaged site.

Sample Computations

The following examples illustrate use of the methods described previously.

Example 1. Gaged site with drainage area within a single hydrologic region: Estimate the 50-year peak discharge at the gage site on Canaseraga Creek near Dansville (04225000).

Given: a) Gaged basin is in hydrologic region 6 (pl. 2)

- b) Drainage area = 152.0 mi^2 (table 10)
- c) Main channel slope = 33.50 ft/mi (table 10)
- d) Area (in percent of total drainage area) of lakes, ponds, and swamps (basin storage) = 0.84 percent (table 10)
- e) Mean annual precipitation = 33.0 in. (pl. 1 and table 10)
- f) The 50-year peak-discharge $(Q_{50(g)})$ based on the gaged record = 10,300 ft³/s (table 9)
- g) Number of years (N) of annual peak-discharge record used to determine $Q_{50(g)} = 61$ years (table 9)

Solution:

The regression estimate $(Q_{50(r)})$ for station 04225000 is computed by the following equation for region 6 (table 2):

$$Q_{50(r)} = 22.1 \text{ (A)} \cdot 0.869 \text{ (SL)} \cdot 0.374 \text{ (ST+1)} \cdot 0.224 \text{ (P-20)} \cdot 0.356$$

From the given basin characteristics:

$$Q_{50(r)} = 22.1 (152)^{0.869} (33.5)^{0.374} (0.84+1)^{-0.224} (33.0-20)^{0.356}$$

$$Q_{50(r)} = 14,100 \text{ ft}^3/\text{s} \text{ (also in table 9)}$$

The equivalent years of record (E) for $Q_{50(r)}$ for region 6 is 9 years (table 2). Therefore, the weighted peak-discharge $Q_{50(w)}$ for station 04225000 (method for gaged sites) is:

$$Q_{50(W)} = \frac{Q_{50(g)}(N) + Q_{50(r)}(E)}{N + E}$$

$$Q_{50(W)} = \frac{(10,300)(61) + (14,100) (9)}{61 + 9}$$

$$Q_{50(w)} = 10,800 \text{ ft}^3/\text{s}$$

Example 2. Drainage area crosses hydrologic region boundaries: Compute the 50-year peak-discharge regression estimate for Genesee River at Rochester (04232000). For this example, assume this site is ungaged.

Given: a) Drainage area at the site is 2,467 mi², and the site is in hydrologic region 7 (pl. 2)

- b) The upper 53.5 percent (1,321 mi²) of the basin is in hydrologic region 6.
- c) Main channel slope = 8.13 ft/mi (table 10).
- d) Area of lakes, ponds, and swamps = 3.17 percent (table 10)
- e) Mean annual precipitation = 33.5 in (pl. 1 and table 10)
- f) Average channel elevation = 1,006 ft (table 10)
- g) Stream length = 158.5 mi (table 10)

Solution:

Percentage of total drainage area within hydrologic region 6 is 53.5 percent, and Percentage of total drainage area within hydrologic region 7 is 46.5 percent. These are the weighting factors after computing 50-year peak-discharges at the gaged site through regression equations for regions 6 and 7.

$$Q_{50(r)}$$
 (region 6) = 22.1 (A)^{0.869} (SL)^{0.374} (ST+1)^{-0.224} (P-20)^{0.356} (table 2)

$$Q_{50(r)}$$
 (region 6) = 22.1 (2,467)^{0.869} (8.13)^{0.374} (3.17+1)^{-0.224} (33.5-20)^{0.356}

$$Q_{50(r)}$$
 (region 6) = 78,700 ft³/s

The basin-shape index (SH) is computed as the stream length squared, divided by the drainage area.

$$SH = \frac{(158.5)^2}{2,467}$$

$$SH = 10.18$$
 (also in table 10)

$$Q_{50(r)}$$
 (region 7) = 74.5(A)^{1.019} (SL)^{0.550} (ST+1)^{-0.313} (P-20)^{1.011} (EL)^{-0.770} (SH)^{0.282} (table 2)

$$Q_{50(r)}$$
 (region 7) = 74.5(2,467)^{1.019} (8.13)^{0.550} (3.17+1)^{-0.313} (33.5-20)^{1.011} (1,006)^{-0.770} (10.18)^{0.282}

$$Q_{50(r)}$$
 (region 7) = 56,300 ft³/s

Use drainage-area percentages as weighting factors to compute final 50-year regression estimate at station 04232000:

$$Q_{50(r)} = (78,700)(0.535) + (56,300)(0.465) = 68,300 \text{ ft}^3/\text{s} \text{ (also in table 9)}$$

Region 6 Region 7

Note that the Genesee River at Rochester is currently regulated, and the above information represents preregulation conditions. The example is for illustration purposes only and is not applicable to present conditions at this station.

- **Example 3. Ungaged site near a gaged site on the same stream:** Estimate the 50-year peak-discharge at the ungaged site Canaseraga Creek at Groveland.
- Given a) This site's basin is in hydrologic region 6 downstream from the gaged site of Canaseraga Creek near Dansville (station 04225000, drainage area = 152 mi²).
 - b) Drainage area at Groveland = 180 mi² (from 7.5-minute topographic maps)
 - c) Main channel slope = 29.0 ft/mi (from 7.5-minute topographic maps)
 - d) Area of lakes, ponds and swamps = 0.97 percent of basin (from 7.5-minute topographic maps)
 - e) Mean annual precipitation = 32.0 in. (pl. 1)

Solution:

The drainage area of Canaseraga Creek at Groveland is between 50 and 150 percent of the drainage area at the gage near Dansville; use the method for an ungaged site near a gaged site on the same stream.

The correction factor ratio for the gaged site near Dansville (04225000) is:

 $C_g = Q_{50(w)}/Q_{50(r)}$

 C_g = 10,800/14,100 (data from example 1 and table 9)

 $C_{\infty} = 0.766$

The correction factor ratio for the ungaged site at Groveland is

 $C_{11} = C_g - [2(IA_g - A_u) / A_g] (C_g - 1)$

 $C_u = 0.766 - [2(1152-1801)/152] (0.766-1)$

 $C_{11} = 0.852$

From the given basin characteristics, the 50-year regression estimate ($Q_{50(r)}$) for the ungaged site at Groveland is computed from the following equation for region 6 (table 2):

 $Q_{50(r)} = 22.1 \text{ (A)}^{0.869} \text{ (SL)}^{0.374} \text{ (ST+1)}^{-0.224} \text{ (P-20)}^{0.356}$

 $Q_{50(r)} = 22.1 (180)^{0.869} (29.0)^{0.374} (0.97+1)^{-0.224} (32.0-20)^{0.356}$

 $Q_{50(r)} = 14,800 \text{ ft}^3/\text{s},$

The weighted 50-year peak-discharge estimate at the ungaged site at Groveland is:

 $Q_{50(w)} = Cu(Q_{50(r)})$

 $Q_{50(w)} = 0.852 (14,800)$

 $Q_{50(w)} = 12,600 \text{ ft}^3/\text{s}.$

LIMITATIONS, ACCURACY, AND SENSITIVITY OF REGRESSION EQUATIONS

The regression equations developed in this study apply to streams in New York where peak discharge is not significantly affected by stream regulation (no more than 20 percent of the drainage area is upstream from a controlled reservoir), or by diversion or other manmade influences. The equations are not applicable to basins in urban areas (where more than 15 percent of the basin is urbanized) unless the effects of urbanization on high flow are insignificant. Channelization, channel structures or constrictions, and significant withdrawals from the stream may alter peak discharges and cause them to differ from those expected under natural conditions. If the effects of urbanization can be quantified, adjustments to the "rural" peak-discharge estimates can be made through procedures outlined by Sauer and others (1983) to estimate peak discharge for urban areas. Lumia (1984) developed peak-discharge profiles for several streams in Rockland County, including many urbanized basins.

The relation between peak discharge and basin characteristics (actually the logarithms of these variables) given by the multiple linear regression equation is assumed to be linear only within the range of characteristics that define that relation. The suitability of the regional equations is undefined for streams having values beyond the ranges used, and extrapolation requires extreme caution or may be infeasible. The range of each basin characteristic for each region is given in table 6.

In flood-frequency analyses, the gaged record is assumed to be representative of long-term conditions; sampling error results from limitations on the number of years of gaged record available and from hydrologic conditions during the particular period sampled. The use of generalized least-squares regression minimizes but does not prevent this type of error.

The standard error of estimate and estimated prediction error are indices of the expected accuracy of the regression estimates. If all assumptions for applying regression are met, the discrepancy between the regression estimate and actual streamflow will be within one standard error about 68 percent of the time.

The basin characteristics used in the estimating equations must be computed or estimated from maps or other sources of data and therefore are subject to error in measurement and judgment. To determine how much variability is introduced by error in computing the basin characteristics, sensitivity tests were conducted on the 50-year peak-discharge regression equation for each hydrologic region; results (table 7) should be indicative of the relative magnitude of the sensitivities of the remaining equations. The data presented in table 7 were computed by varying only one basin characteristic at a time while holding all others in that equation constant. Each characteristic was increased 10, 20, and 30 percent, then decreased 10, 20, and 30 percent; the resulting changes in computed peak discharge are given in

Table 6.--Range in regional basin characteristics used in the regression analyses for eight hydrologic regions in New York.

[Hydrologic region locations are shown in pl. 2.]

			Ba	sin characte	ristics		
Hydrologic region	Area (A) (square miles)	Slope (SL) (feet per mile)	Storage (ST) (percent)	Precipita- tion (P) (inches)	Elevation (EL) (feet)	Forest area (F) (percent)	Shape index (SH) (mile per mile)
1	1.34 - 612	3.60 - 204	0.01 - 31.6	32.0 - 55.0	304 - 1.780	11.0 - 95.0	2.27 - 14.7
2	.54 - 4.500	9.20 - 252	.01 - 12.2	32.0 - 55.5	205 - 2,209	20.0 - 99.0	1.09 - 17.8
3	1.93 - 711	5.00 - 248	.94 - 11.2	37.0 - 47.0	56 - 1,200	19.0 - 99.0	1.31 - 9.77
4	3.61 - 386	21.8 - 316	.01 - 7.42	36.0 - 57.5	485 - 2,340	21.0 - 98.0	1.29 - 11.2
4A	.41 - 784	9.30 - 435	.01 - 5.87	40.5 - 54.0	1,005 - 2,180	38.0 - 100	1.98 - 6.48
5	.70 - 3,941	3.00 - 326	.01 - 12.0	39.0 - 43.5	553 - 1,810	14.0 - 100	1.66 - 9.28
6	1.02 - 4,773	3.40 - 194	.00 - 7.82	29.5 - 46.0	330 - 1,818	7.00 - 92.0	1.43 - 18.0
7	.58 - 2,467	4.10 - 156	.01 - 13.4	29.5 - 41.0	349 - 1,489	7.00 - 56.0	1. 79 - 17.5

percent. To test variables without a constant added to or subtracted from them (for example, drainage area), the regional mean value of each variable was used to compute a "base" 50-year peak discharge. The variable being tested was then varied by the above percentages, and the resulting changes (in percent) of 50-year peak-discharge were tabulated. For variables to which constants were added or subtracted, such as mean annual precipitation (P) and storage (ST), a regional "low" and "high" value was used to compute a "base" 50-year peak-discharge because errors in computed discharges will be affected differently, depending on the magnitude of the basin characteristic being tested. For testing purposes, regional 10th- and 90th-percentile values of these characteristics were used as low and high values. As table 7 shows, mean annual precipitation was the variable to which peak discharges were most sensitive, and drainage area was the next. Although mean annual precipitation is the most sensitive variable, selection of a precipitation value from plate 1 that is in error by more than 10 percent is unlikely.

SUGGESTIONS FOR FURTHER STUDY

Standard errors of the regional estimating equations presented in this study are less than those obtained from equations published in 1979 as a result of the addition of small-stream gaging stations to the network, extended record of annual peak discharges, and improved analytical methods. The study of several factors related to flood-frequency relations, discussed below, could decrease errors in future analyses still further, however.

Skewness Coefficient

Weighting the skewness coefficient computed from station records with a generalized skewness coefficient reduces the bias caused by stations with relatively short periods of record (U.S. Water Resources Council, 1981). This study used 178 gaging stations on rural, unregulated streams with 25 or more years of record; these included records for streams before reservoir construction. A comparison of skew values from the U.S. Water Resources Council (1981) national generalized skew map with systematic-record station skews, for stations in each of the eight hydrologic regions of New York, is given in figure 14 (p. 42). Some regional bias and significant errors are indicated by these graphs; therefore a regionalized State skew map is needed before future updates of the New York flood-frequency relations are undertaken.

Precipitation Maps

The flood-frequency relations for New York show mean annual precipitation to be a critical factor in determining peak discharges. An improved mean-annual-precipitation map and maps of shorter duration precipitation (such as a 24-hour, 2-year rainfall-intensity map) could significantly increase the accuracy and predictive ability of the flood-frequency relations.

Small-Stream Data

Historical flood data on small streams could alter and improve the current flood-frequency relations but is generally unavailable. Additional information might be available from flood-insurance studies, government agencies, public libraries, or engineering records; such information would be best collected and documented in a format similar to that used by Robideau and others (1984).

Expansion of the current annual peak-discharge gaging-station network to include additional small-stream sites (particularly sites with drainage areas less than 1.0 mi²) could improve the accuracy of computed peak discharges for these sites. A rainfall-runoff data network with subsequent modeling could be used to supplement the peak-discharge data base for very small streams.

Table 7.-Results of sensitivity analysis showing percent change in computed 50-year peak discharges within each of eight hydrologic regions of New York.

[Region locations are shown in pl. 2]

Fynlanatory			Percent error	in explanator	variable		
variable	+30	+20	+10	+10 10 -10	-10	-20	-30
Region 1							
A	25.6	17.1	8.6	0.0	-8.7	-17.6	-26.6
ST (low)	4.4	-3.0	-1.5	0.	1.6	3.3	5.0
ST (high)	-11.2	-7.9	-4.2	0.	4.7	10.2	16.5
P (low)	68.3	45.8	23.1	0:	-23.6	-47.9	-73.2
P (high)	44.0	29.5	14.8	0.	-15.0	-30.3	-45.9
F (low)	9.6-	-6.7	-3.5	0.	3.9	8.4	13.4
F (high)	-11.5	-8.1	-4.3	0.	4.9	10.7	17.4
Region 2							
· · · · ·	26.2	17.6	8.8	0.	-8.9	-18.0	-27.1
SL	6.4	4.4	2.3	0.	-2.5	-5.1	-8.1
ST (low)	-1.7	-1.1	-0.6	0.	9.	1.2	1.9
ST (high)	-6.0	-4.2	-2.2	0.	2.5	5,3	8.5
P (low)	76.4	50.7	25.2	0.	-24.7	-49.0	-72.4
P (high)	55.1	36.5	18.2	0.	-18.0	-35.7	-53.1
EL Š	-7.6	-5.4	-2.8	0.	3.2	7.0	11.4
Region 3							
A	20.7	14.0	7.1	0.	-7.3	-14.8	-22.6
ST (low)	-8.0	-5.6	-2.9	0.	3.2	8.9	10.7
ST (high)	-10.7	-7.5	-4.0	0.	4.6	8.6	16.1
P (low)	81.9	53.5	26.2	0.	-24.8	-48.0	-69.2
P (high)	70.7	46.3	22.7	0.	-21.7	-42.2	-61.3
SH	-12.8	-9.1	-4.8	0.	5.6	12.3	20.4
Region 4							
A	23.5	15.8	8.0	0.	-8.1	-16.4	-24.9
ST (low)	-1.1	7	-0.4	0.	4.	8.0	1.1
ST (high)	-8.7	-6.1	-3.2	0.	3.6	7.8	12.5
P (low)	68.4	45.5	22.7	0.	-22.7	-45.3	-67.9
P (high)	49.3	32.9	16.4	0.	-16.4	-32.8	-49.1

Table 7.--Results of sensitivity analysis showing percent change in computed 50-year peak discharges within each of eight hydrologic regions of New York (continued).

Explanatory			Percent error	Percent error in explanatory variable	ariable		
variable ¹	+30	+20	+10	, 0	-10	-20	-30
Region 4A							
A	24.7	16.6	8.3	0.0	-8.5	-17.1	-25.4
P (low)	90.4	58.5	28.3	0.	-26.1	-49.7	-70.5
P (high)	76.1	49.3	24.0	0.	-22.4	-43.0	-61.7
Region 5							
A	29.3	19.5	8.6	0.	8.6-	-19.6	-29.4
SL	9.0	6.2	3.2	0.	-3.4	-7.1	-11.1
ST (low)	1	0	0	0.	0:	0.	ι.
ST (high)	-4.7	-3.3	-1.7	0:	1.9	4.0	6.5
SH	-3.9	-2.7	-1.4	0.	1.6	3.4	5.5
Region 6							
, A	25.6	17.2	8.6	0.	-8.7	-17.6	-26.7
IS	10.3	7.1	3.6	0.	-3.9	-8.0	-12.5
ST (low)	;	0.	0.	0.	0.	0.	1.
ST (high)	-4.7	-3.3	-1.7	0:	1.9	4.0	6.3
P (low)	22.3	15.7	8.4	0.	6.6-	-22.3	-40.0
P (high)	17.8	12.5	9.9	0.	-7.4	-16.2	-26.9
Region 7							
A	30.7	20.4	10.2	0.	-10.2	-20.4	-30.5
SL	15.5	10.5	5.4	0.	-5.6	-11.5	-17.8
ST (low)	-1.5	-1.0	5	0.	ιč	1.1	1.6
ST (high)	-7.2	-5.1	-2.7	0.	3.0	6.4	10.4
P (low)	85.7	57.1	28.5	0.	-28.4	-56.7	-84.8
P (high)	62.9	41.9	20.9	0.	-20.9	-41.7	-62.5
EL	-18.3	-13.1	-7.1	0.	8.5	18.7	31.6
HS	7.7	5.3	2.7	0.	-2.9	-6.1	9.6-
¹ A = Drainage area		ţr.	Percent basin forest cover	est cover			
SL = Main-channel slope	lope	EL =	Average main-c	Average main-channel elevation			
S1 = Fercent basin storage P = Mean annual precipitation	orage recipitation		Dasiii-silape iiluea	Υ.			
	7	,					

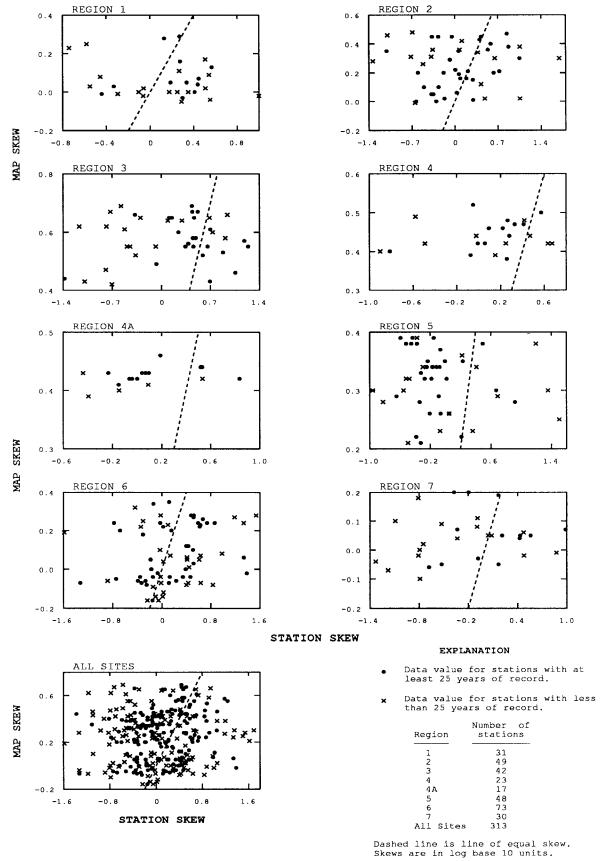


Figure 14.--Comparison of station skews with generalized map skews from U.S. Water Resources Council (1981) for gaging stations within eight hydrologic regions of New York. (Locations of regions are shown on pl. 2.)

Other Factors

Study of several other factors could potentially improve the flood-frequency relations for New York. These factors include (1) the effect of mixed populations in annual peak-discharge data analysis (for example, floods caused by thunderstorms combined with floods from snowmelt or hurricanes), (2) effects of additional basin characteristics (for example, basin lag factors, channel width, indices from land-use maps, rainfall indices) in the regression analyses to account for unexplained variability in peak discharges, and (3) the effect of regulation, with development of a criterion for selecting or rejecting peak-discharge records on the basis of storage effects.

SUMMARY

This report presents regional regression equations based on generalized least-squares regression analysis for calculating the magnitude and frequency of floods on rural, unregulated streams in New York, excluding Long Island. Procedures for estimating peak discharges with recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years for eight hydrologic regions of New York are given; the procedures depend on whether the estimate is for a gaged or ungaged basin and whether the basin crosses hydrologic region boundaries or extends into an adjacent State. Estimated standard error of prediction for the regression equations range from 17 to 51 percent. Tables and illustrations summarize the data and give final estimates of peak discharges at the 313 gaging stations used for the analyses. Examples of discharge computations are provided, as are discussions of the limitations and accuracy of the estimating equations and the relative importance of the significant variables (sensitivity analysis).

Several suggestions for additional study are discussed, including development of a generalized skew map for New York. Alternative peak-discharge estimating equations, based on drainage area only, are included. These equations provide estimates of peak discharges that are easier to compute, but less accurate, than those calculated through the full-regression equations.

SELECTED REFERENCES

- Choquette, A. F., 1988, Regionalization of peak discharges for streams in Kentucky: U.S. Geological Survey Water Resources Investigations Report 87-4209, 105 p.
- Clement, R. W., 1987, Floods in Kansas and techniques for estimating their magnitude and frequency on unregulated streams: U.S. Geological Survey Water Resources Investigations Report 87-4008, 50 p.
- Cline, M.G., 1961, Soils and soil associations of New York: Ithaca, N.Y., New York State College of Agriculture at Cornell University; Cornell Extension Bulletin 930; 64 p.
- Darmer, K. I., 1970, A proposed streamflow data program for New York: U.S. Geological Survey openfile report, 29 p.
- Dempster, G. R., Jr., 1983, Instructions for streamflow/basin characteristics file: U.S. Geological Survey National Water Data Storage and Retrieval System, v. 4, chapter II (unpaginated).
- Fenneman, N. M., 1938, Physiography of eastern United States: New York, McGraw-Hill, 714 p.
- Flippo, H. N., Jr. 1977, Floods in Pennsylvania: Pennsylvania Department of Natural Resources, Water Resources Bulletin 13, 59 p.
- Hardison, C. H., 1971, Prediction error of regression estimates of streamflow characteristics at ungaged streams, *in* Geological Survey Research 1971: U.S. Geological Survey Professional Paper 750-C, p. C228-C236.

SELECTED REFERENCES (continued)

- Hunt, O. P. 1969, Mean annual precipitation map for New York for the period 1931-60: Unpublished map on file in Albany, N.Y. office of the U.S. Geological Survey.
- Iman, R. L., and Conover, W. J., 1983, A modern approach to statistics: New York, John Wiley, 497 p.
- Johnson, C. G., and Tasker, G. D., 1974, Progress report on flood magnitude and frequency of Vermont streams: U.S Geological Survey Open-File report, 74-130, 36 p.
- Kirby, William, 1981, Annual flood frequency analysis using U.S. Water Resources Council guidelines (Program J407): U.S. Geological Survey National Water Storage and Retrieval System, v. 4, chapter I, section C, 57 p.
- Koch, R.W., and Smillie, G.M., 1986, Bias in hydrologic prediction using log-transformed regression models: Water Resources Bulletin, v. 22, no. 5, p. 717-723.
- Ku, H. F.H., Randall, A.D., and MacNish, R.D., 1975, Streamflow in the New York part of the Susquehanna River basin: New York State Department of Environmental Conservation, Bulletin 71, 130 p.
- Lumia, Richard, 1984, Flood-discharge profiles of selected streams in Rockland County, New York: U.S. Geological Survey Water Resources Investigations Report 84-4049, 32 p.
- Lyford, F.P., Dysart, J.E., Randall, A.D., and Kontis, A.L., 1984, Glacial aquifer systems in the northeastern United States--a study plan: U.S. Geological Survey Open-File Report 83-928, 33 p.
- Minitab, Inc., 1985, Minitab reference manual: State College, Pa., Minitab, Inc., 232 p.
- National Oceanic and Atmospheric Administration, 1980, Climates of the States, volume 1, Alabama North Dakota: p. 530-539.
- New York State Economic Development Board, 1976, LUNR Inventory—what it is and how it is used: Albany, N.Y., New York State Economic Development Board, 16 p.
- Robideau, J. A., Burke, P. M., and Lumia, Richard, 1984, Maximum known stages and discharges of New York streams through September 1983: U.S. Geological Survey Open-File Report 83-927, 83 p.
- Robison, L. F., 1961, Floods in New York-magnitude and frequency: U.S. Geological Survey Circular 454, 10 p.
- SAS [Statistical Analysis System] Institute, Inc., 1982, SAS user's guide—statistics, 1982 ed.: Cary, N.C., SAS Institute, Inc., 584 p.
- Sauer, V. B., Thomas, W. O., Jr., Stricker, V. A., and Wilson, K. V., 1983, Flood characteristics of urban watersheds in the United States: U.S. Geological Survey Water-Supply Paper 2207, 63 p.
- Speer, P. R., and Gamble, C. R., 1965, Magnitude and frequency of floods in the United States, Part 3-A, Ohio River basin except Cumberland and Tennessee River basins: U.S Geological Survey Water-Supply Paper 1675, 630 p.
- Stankowski, S. J., 1974, Magnitude and frequency of floods in New Jersey, with effects of urbanization: New Jersey Department of Environmental Protection Division of Water Resources, Special Report 38, 46 p.

SELECTED REFERENCES (continued)

- Stedfast, D. A., 1986, Evaluation of six methods for estimating magnitude and frequency of peak discharges of urban streams in New York: U.S. Geological Survey Water Resources Investigations Report 84-4350, 24 p.
- Stedinger, J. R., and Tasker, G. D., 1985, Regional hydrologic analysis 1, ordinary, weighted, and generalized least squares compared: Water Resources Research, v. 21, no. 9, p. 1421-1432.
- Tasker, G. D., 1982, Simplified testing of hydrologic regression regions: American Society of Civil Engineers, Journal of Hydraulics Division, v. 108, no HY10, p. 1218-1222.
- Tasker, G. D., and Stedinger, J. R., 1989, An operational GLS model for hydrologic regression: Journal of Hydrology, v. 111, p. 361-375.
- Thomas, W. O., Jr., 1980, Comparison of procedures for weighting flood-frequency curves: Water Resources Bulletin, April-June, 1980, p. 23-30.
- Tice, Richard H., 1968, Magnitude and frequency of floods in the United States, part 1-B, North Atlantic Slope basins, New York to York River: U.S. Geological Survey Water-Supply Paper 1672, 585 p.
- U.S. Department of Commerce, Weather Bureau, 1961, Rainfall frequency atlas of the United States: Washington, D.C., Technical Paper no. 40, 115 p.
- U.S. Water Resources Council, 1981, Guidelines for determining floodflow frequency: Hydrology Subcommittee Bulletin 17B, 28 p., appendix.
- Wagner, L. A., 1982, Drainage areas of New York streams, by river basins—a stream gazetteer, Part 1, data compiled as of October 1980: U.S. Geological Survey Open-File Report 81-1055, 359 p.
- Wandle, S. W., Jr., 1977, Estimating the magnitude and frequency of floods on natural-flow streams in Massachusetts: U.S. Geological Survey Water-Resources Investigations 77-39, 26 p.
- Wandle, W.S. Jr., 1983, Estimating peak discharges of small, rural streams in Massachusetts: U.S. Geological Survey Water Supply Paper 2214, 26 p.
- Weiss, L. A., 1983, Evaluation and design of a streamflow-data network for Connecticut: Connecticut Water Resources Bulletin No. 36, 30 p.
- Wiitala, S. W., 1965, Magnitude and frequency of floods in the United States, Part 4, St. Lawrence River basin: U.S. Geological Survey Water-Supply Paper 1677, 357 p.
- Zembrzuski, T. J., Jr., and Dunn, B., 1979, Techniques for estimating magnitude and frequency of floods on rural, unregulated streams in New York State excluding Long Island: U.S. Geological Survey Water-Resources Investigations 79-83, 66 p.

[Station locations shown in pl. 2. $mi^2 = square miles$, $ft^3/s = cubic feet per second$, s = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study.

				Period of	Maximum k	nown discha	Maximum known discharge and recurrence interval ³	e interval ³
Station number	Station name ¹	County	Drainage area (mi²)	unregulated record (water years)	Date	Dis.	Discharge) [(ft³/s)/mi²]	Recurrence interval (years)
Housatoni	Housatonic River Basin							
01199050	Salmon Creek at Lime Rock, CT	Litchfield,CT	29.4	1962-87	08-19-55	6,300a	214	>100b
01199400	Webatuck Creek nr South Amenia, NY	Dutchess	81.0	1962-76,84	05-29-84	3,400c	42.0	25
01199420	Tenmile River nr Wassaic, NY	Dutchess	120	1960-76,84	05-29-84	5,500c	45.8	æ
01199477	Stony Brook nr Dover Plains, NY	Dutchess	1.93	1976-87	04-04-87	532	276	35
01200000	Tenmile River nr Gaylordsville, CT	Dutchess	203	1930-87	08-19-55	17,400a	85.7	>100
06680210 46	Saugatuck River nr Redding, CT	Fairfield,CT	21.0	1962-87	03-25-69	2,160	103	20b
Hudson River Basin	iver Basin							
01312000	Hudson River nr Newcomb, NY	Essex	192	1926-87	01-01-49	7,440	38.8	20
01313500	Cedar R below Chain Lakes nr Indian Lake,NY	Hamilton	160	1931-69	09-28-42	10,200	63.8	>100
01314000	Hudson River at Gooley nr Indian Lake, NY	Essex	419	1917-68	01-01-49	15,000	35.8	20
01315500	Hudson River at North Creek, NY	Warren	792	1908-87	12-31-48	28,900	36.5	100
01318500	Hudson River at Hadley, NY	Saratoga	1,664	1908-20,22-872	03-27-13	49,000cd	29.4	>100
01319000	E Br Sacandaga River at Griffin, NY	Hamilton	114	1934-78	12-31-48	10,700	93.9	98
01319800	W Br Sacandaga R at Arietta, NY	Hamilton	28.9	1963-85	03-25-79	1940	67.1	20
01319950	Sand Lake Outlet nr Piseco, NY	Hamilton	7.16	1962-83,85	04-09-80	475	6.3	10
01321000	Sacandaga River nr Hope, NY	Hamilton	491	1912-87	03-27-13	32,000	65.2	>100
01325000	Sacandaga R at Stewarts Bridge nr Hadley,NY Saratoga	Saratoga	1,055	1908-29	03-28-13	35,500	33.6	100

[Station locations shown in pl. 2. mi^2 = square miles, ft³/s = cubic feet per second, > = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

			Drainage	Period of unregulated	Maximum k	nown dischar	Maximum known discharge and recurrence interval ³ Recurrence	e interval ³ Recurrence
number	Station name ¹	County	area (mi²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
01326500	Hudson River at Spier Falls, NY	Warren	2,779	1900-22	03-28-13	89,100	32.1	>100
01328000	Bond Creek at Dunham Basin, NY	Washington	14.7	1948-82,84	12-31-48	1370	93.2	04
01329000	Batten Kill at Arlington, VT	Bennington, VT	152	1929-84	03-18-36	11,100	73.0	>100b
01329500	Batten Kill at Battenville, NY	Washington	394	1904,13,23-68, 1977,84,87	11-04-27	21,300	54.1	>100
01329780	Sessions Brook at Porter Corners, NY	Saratoga	1.04	1968-86	03-14-77	80c	76.9	25
01329900	Glowegee Creek Trib at Mosherville, NY	Saratoga	1.42	1968-86	03-14-77	139	6.79	20
01330000	Glowegee Creek at West Milton, NY	Saratoga	26.0	1949-63,71-72	12-31-48	1,670	64.2	94
01330500	Kayaderosseras Creek nr West Milton, NY	Saratoga	0.06	1927-87	03-18-36	4,710	52.3	100
01330880	Saratoga Lake Trib nr Bemis Heights, NY	Saratoga	2.98	1968-87	98-02-80	448	150	>100
01331400	Dry Brook nr Adams, MA	Berkshire,MA	7.67	1963-74	12-21-73	947	124	10b
01332000	N Br Hoosic River at North Adams, MA	Berkshire,MA	40.9	1928,1932-87	1127	P068'6	242	90 8
01332500	Hoosic River nr Williamstown, MA	Berkshire,MA	126	1941-87	12-31-48	13,000	103	906
01333000	Green River at Williamstown, MA	Berkshire,MA	42.6	1949-87	12-21-73	4,060e	95.3	30b
01333367	Little Hoosic River at Cherryplain, NY	Rensselaer	2.22	1976-86	04-19-83	167	75.2	∞
01333500	Little Hoosic River at Petersburg, NY	Rensselaer	56.1	1949,1952-87	12-31-48	7,470d	133	100
01334000	Walloomsac River nr North Bennington, VT	Bennington, VT	111	1932-87	09-21-38	8,450a	76.1	35b
01334500	Hoosic River nr Eagle Bridge, NY	Rensselaer	510	1911-87	12-31-48	55,400	109	>100

Footnotes at the end of table, (p. 66).

[[Station locations shown in pl. 2. $mi^2 = square miles$, $ft^3/s = cubic feet per second$, s = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

				Poriod of	Maximum k	nown dischare	Maximim known discharge and recurrence interval ³	e interval ³
			Drainage	unregulated				Recurrence
Station			area	record		Discl	Discharge	interval
number	Station name ¹	County	(mi²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
01335500	Hudson River at Mechanicville, NY	Saratoga	4,500	1869,1888-1929	03-28-13	120,000	26.7	>100
01342730	Steele Creek at Ilion, NY	Herkimer	26.2	1965-85	02-20-81	1,810	69.1	10
01342800	West Canada Creek at Nobleboro, NY	Herkimer	193	1946,1958-76, 1985,87	12-29-84	20,000d	104	>100
01346820	Mohawk River Trib at Indian Castle, NY	Herkimer	1.36	1974-86	03-22-80	210	154	30
01347460	Spruce Lake Trib nr Salisbury Center, NY	Herkimer	0.54	1975-86	10-17-77	72	133	10
01348000	East Canada Creek at East Creek, NY	Herkimer	289	1898,1900,02, 1913,28-87 ²	03-26-13 10-02-45	15,700cd 24,000df	54.3 83.0	100
01348420	North Creek nr Ephratah, NY	Fulton	6.52	1975-87	06-29-82	540	82.8	25
01349000	Otsquago Creek at Fort Plain, NY	Montgomery	59.2	1950-87	10-28-81	10,400	176	40
01349360	Van Wie Creek Trib nr Randall, NY	Montgomery	1.00	1974-86	03-21-80	219	219	45
01349850	Batavia Kill at Hensonville, NY	Greene	13.5	1955,60,65,68, 1972-87	08-13-55 09-12-60	5,000ad 5,000ad	370 370	20 20
01350000	Schoharie Creek at Prattsville, NY	Greene	236	1904,1908-87	10-16-55	51,600	219	40
01350120	Platter Kill at Gilboa, NY	Schoharie	11.1	1976-87	04-04-87	1,210	109	6
01350140	Mine Kill nr North Blenheim, NY	Schoharie	16.3	1975-87	05-29-84	1,320	81.0	10
01350900	Beaverdam Creek nr Knox, NY	Albany	6.91	1963-86	03-27-63	1,400	203	80
01351000	Fox Creek at West Berne, NY	Albany	73.0	1925-32,63-74, 1987	12-21-73	6,400	87.7	99

mi² = square miles, ft³/s = cubic feet per second, > = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued). (Station locations shown in pl. 2.

Recurrence Maximum known discharge and recurrence interval³ interval (years) 10 >100 10 100 100 2 2 ß 188 # 8 35 ജ ß 3 $[(ft^3/s)/mi^2]$ 28.9 9.06 92.2 64.3 56.7 92.3 82.4 305 119 160 133 108 259 196 157 Discharge 10,800cd (tt³/s)725a 11,900a 1,830d 3,800d **200c** 1,100c 1,850 5,590 15,400 3,600 3,280 3,240 1,780 29,800 03-22-80 09-22-38 10-16-55 03-15-86 06-30-73 07-01-73 12-31-48 06-30-73 04-04-87 04-04-87 03-21-80 03-21-80 06-30-73 10-15-55 09-12-60 Date 1953,55-56,60, 1967-87 1951,56,72, 1976-87 1960,1969-78, 1980,87 1968-87 1958-87 1968-86 (water years) 1958-86 1958-87 1968-77 1968-77 1961-80,84 1909-10,13, 1928-68,84 1911-77,80,87 1924-68,77,84 1956,68-84,87 unregulated Period of record Drainage area (mi²) 3.61 3.70 3.11 11.4 98.0 35.3 13.9 27.5 89.4 32.6 61.6 9.09 35.1 329 131 Schenectady Schenectady Rensselaer Rensselaer Schoharie Columbia Columbia Columbia Albany Albany Greene Greene Greene Greene County Ulster Moordener Kill at Castleton-on-Hudson, NY Bushnellsville Creek at Shandaken, NY Hannicrois Creek nr New Baltimore, NY Catskill Creek Trib at Franklinton, NY Roeliff Jansen Kill nr Hillsdale, NY Indian Kill nr Glenville Center, NY Claverack Creek at Claverack, NY Kinderhook Creek at Rossman, NY Plotter Kill at Rynex Corners, NY Catskill Creek at Oak Hill, NY Tenmile Creek at Oak Hill, NY Coeymans Creek nr Selkirk, NY Normans Kill nr Westmere, NY Shingle Kill at Cairo, NY Poesten Kill nr Troy, NY Station name1 01362100 01359519 01359902 01361000 01361200 01361453 01361500 01361900 01362197 01354300 01355405 01358500 01359924 01361570 01359750 Station number

Footnotes at the end of table, (p. 66).

[[Station locations shown in pl. 2. $mi^2 = square miles$, $ft^3/s = cubic feet per second$, s = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

				Period of	Maximum k	nown discharg	Maximum known discharge and recurrence interval ³	ce interval ³
			Drainage	unregulated		Losi C	Discharge	Recurrence
Station number	Station name ¹	County	area (mi²)	water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
	T. S. Carlotte and Marketing and T. S. Carlotte and T. Car							
01362198	Esopus Creek at Shandaken, NY	Ulster	59.5	1951,64-87	03-30-51 04-04-87	20,000cdg 16,100	336 271	0,4
01362500	Esopus Creek at Coldbrook, NY	Ulster	192	1932-87	03-21-80	65,300	340	20
01365000	Rondout Creek nr Lowes Corners, NY	Sullivan	38.5	1937-87	07-22-38	2,600	197	20
01365500	Chestnut Creek at Grahamsville, NY	Sullivan	20.9	1939-87	10-15-55	4,640	222	93
01366500	Rondout Creek nr Lackawack, NY	Ulster	100	1928,32-51	08-26-28	26,700d	267	>100
01366650	Sandburg Creek at Ellenville, NY	Ulster	26.7	1957-77	08-19-60	4,660	82.2	10
01367500	Rondout Creek at Rosendale, NY	Ulster	378	1910,15-16,18, 1927-51	10-16-55 08-27-28	35,800h 27,300	94.7 72.2	900
01368000	Wallkill River nr Unionville, NY	Sussex,NJ	140	1938-81,84	08-19-55	6,880a	49.1	100b
01368500	Rutgers Creek at Gardnerville, NY	Orange	59.7	1944-68,84,87	08-19-55	8,490a	142	>100
01369000	Pochuck Creek nr Pine Island, NY	Orange	0.86	1938-77,84	10-16-55	3,090	31.5	20
01369500	Quaker Creek at Florida, NY	Orange	69.6	1938-79,84	09-21-38	1,050a	108	30
01370000	Wallkill River at Pellets Island, NY	Orange	385	1920-68,84	03-14-36	12,400	32.2	99
01371000	Shawangunk Kill at Pine Bush, NY	Ulster	102	1925-32,52, 1955-75,84	08-19-55 10-16-55	9,700ac 9,700c	95.1 95.1	20 20
01371500	Wallkill River at Gardiner, NY	Ulster	711	1925-87	10-16-55	30,800	43.3	8
01372040	Crum Elbow Creek at Hyde Park, NY	Dutchess	17.3	1960-76	07-21-75	009	34.7	15
01372200	Wappinger Creek nr Clinton Corners, NY	Dutchess	92.4	1956-82,84	06-30-73	8,510	92.1	9

[Station locations shown in pl. 2. mi^2 = square miles, ft^3/s = cubic feet per second, > = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

				Period of	Maximum k	nown dischar	Maximum known discharge and recurrence interval ³	e interval ³
Station	Contract and actions	4	Drainage area	unregulated record	0.4°C	Disc	Discharge	Recurrence interval
TICHTICKE	Station name	County	(mm)	(water years)	7 2 2	(11-7-5)	[NIC / 8)/ IIII]	(ama f)
01372300	Little Wappinger Creek at Salt Point, NY	Dutchess	32.9	1956-75,84	07-21-75	1,590	48.3	25
01372500	Wappinger Creek nr Wappingers Falls, NY	Dutchess	181	1929-87	08-19-55	18,600a	103	>100
01372800	Fishkill Creek at Hopewell Junction, NY	Dutchess	57.3	1964-75,84,87	12-21-73	2,770	48.3	15
01373500	Fishkill Creek at Beacon, NY	Dutchess	190	1882-1902, 1945-68,84	03-01-02	13,700d	72.1	>100
01373690	Woodbury Creek nr Highland Mills, NY	Orange	11.2	1966-72,77-84	04-05-84	1,940	173	20
01374130	Canopus Creek at Oscawana Corners, NY	Putnam	8.30	1975-86	04-06-84	416	50.1	7
01374250	Peekskill Hollow Cr at Tompkins Corners, NY	Putnam	14.9	1975-87	05-30-84	916	61.5	œ
01374440	Cedar Pond Brook at Stony Point, NY	Rockland	17.3	1960-68,75-79	11-08-77	2,600c	150	25
01374460	S Br Minisceongo Creek at Thiells, NY	Rockland	5.86	1960-76,78	11-08-77	400c	68.3	15
01376280	Sparkill Creek at Sparkill, NY	Rockland	10.7	1960-68,75-79	11-08-77	1,040	97.2	20
Hackensac	Hackensack River Basin							
01376690	E Br Hackensack River nr Congers, NY	Rockland	96.90	1960,68-80	11-08-77	820	119	10
Passaic River Basin	ver Basin							
01384500	Ringwood Creek nr Wanaque, NJ	Passaic,NJ	19.1	1935-78,86-87	03-30-51	1,150	60.2	15b
01387250	Ramapo River at Sloatsburg, NY	Rockland	60.1	1956,60-63, 1975-79	10-16-55	5,970cd	666	35
01387300	Stony Brook at Sloatsburg, NY	Rockland	18.2	1960-69	05-29-68	1,760	2.96	15

Footnotes at the end of table, (p. 66).

[[Station locations shown in pl. 2. $mi^2 = square miles$, $ft^3/s = cubic feet per second$, s = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

				Period of	Maximum ki	nown discharg	Maximum known discharge and recurrence interval ³	e interval ³
Station			Drainage area	unregulated record		Discl	Discharge	Recurrence interval
number	Station name ¹	County	(mi²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
01387350	Nakoma Brook at Sloatsburg, NY	Rockland	5.40	1960-78	11-08-77	550c	102	15
01387410	Torne Brook at Ramapo, NY	Rockland	2.60	1960-87	11-08-77	1,520	585	45
01387450	Mahwah River nr Suffern, NY	Rockland	12.3	1959-87	11-08-77	1,840	150	25
01387500	Ramapo River nr Mahwah, NJ	Bergen,NJ	120	1904-14,23-87	04-05-84	15,500	129	100b
01387880	Pond Brook at Oakland, NJ	Bergen,NJ	92.9	1968-71,76-87	05-29-68	1,300	192	35b
01390500	Saddle River at Ridgewood, NJ	Bergen,NJ	21.6	1945,55-87	07-23-45	6,800cd	315	>100b
25 Delaware	Delaware River Basin							
01413500	E Br Delaware River at Margaretville, NY	Delaware	163	1937-87	11-25-50	20,600	126	08
01414000	Platte Kill at Dunraven, NY	Delaware	35.0	1942-62	11-25-50	3,810	109	30
01414500	Mill Brook nr Dunraven, NY	Delaware	25.2	1937-87	09-21-38	4,500a	179	70
01415000	Tremper Kill nr Andes, NY	Delaware	33.2	1937-87	09-21-38	4,250a	128	99
01415500	Terry Clove Kill nr Pepacton, NY	Delaware	13.6	1937-62	05-23-42	4,010	295	>100
01417185	Campbell Brook Trib nr Downsville, NY	Delaware	0.41	1975-86	11-26-79	57	139	10
01417500	E Br Delaware River at Harvard, NY	Delaware	458	1935-54	09-22-38	31,400a	9.89	20
01418000	Beaver Kill nr Turnwood, NY	Ulster	40.8	1949-59	11-25-50	7,400	181	45
01418500	Beaver Kill at Craigie Clair, NY	Sullivan	81.9	1937-74	09-27-42	10,300	126	30
01419500	Willowemoc Creek nr Livingston Manor, NY	Sullivan	62.6	1938-74	07-28-69	15,700	251	>100

[Station locations shown in pl. 2. mi^2 = square miles, ft^3/s = cubic feet per second, > = greater than.] Table 8. - Gaging stations and selected peak-discharge records used in the study (continued).

				Period of	Maximum k	nown dischar	Maximum known discharge and recurrence interval3	e interval ³
Station			Drainage area	unregulated record		Disc	Discharge	Recurrence interval
number	Station name ¹	County	(mi²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
01420000	Little Beaver Kill nr Livingston Manor, NY	Sullivan	20.1	1925-81	08-26-28	3,420	170	ଚ୍ଚ
01420500	Beaver Kill at Cooks Falls, NY	Delaware	241	1914-87	03-31-51	31,600	131	50
01421000	E Br Delaware River at Fishs Eddy, NY	Delaware	784	1904,13-54	10-09-03	70,000acd	89.3	20
01422000	W Br Delaware River at Delhi, NY	Delaware	142	1937-74	09-21-38	8,940a	63.0	50
01422500	Little Delaware River nr Delhi, NY	Delaware	49.7	1938-74	08-13-53	4,530	91.1	50
01423000	W Br Delaware River at Walton, NY	Delaware	332	1951-87	03-15-86	19,500	58.7	20
01423500	Dryden Creek nr Granton, NY	Delaware	8.10	1952-67	04-04-60	633	78.1	10
01424000	Trout Creek nr Rockroyal, NY	Delaware	20.0	1952-67	11-28-59	1,920	0.96	10
01424500	Trout Creek at Cannonsville, NY	Delaware	49.5	1941-63	03-22-48	4,600	92.9	35
01425500	Cold Spring Brook at China, NY	Delaware	1.49	1935-68	10-30-35	335	225	>100
01425675	Oquaga Creek nr North Sanford, NY	Broome	4.69	1970-81	02-11-81	480	102	30
01426000	Oquaga Creek at Deposit, NY	Broome	9.79	1941-73	07-04-70	7,170	106	8
01426500	W Br Delaware River at Hale Eddy, NY	Delaware	595	1904,13-63	10-10-03	46,000acd	77.3	>100
01427500	Callicoon Creek at Callicoon, NY	Sullivan	110	1940-82,87	08-17-47	16,000	146	>100
01428000	Tenmile River at Tusten, NY	Sullivan	45.6	1946-73	08-19-55	6,850a	150	>100
01435000	Neversink River nr Claryville, NY	Sullivan	9.99	1938-49,51-872	11-25-50	23,400d	351	20
01436500	Neversink River at Woodbourne, NY	Sullivan	113	1938-53	11-26-50	22,000	195	25

Footnotes at the end of table, (p. 66).

[[Station locations shown in pl. 2. $mi^2 = square miles$, $tt^3/s = cubic feet per second$, s = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

				Period of	Maximum k	nown discharge	Maximum known discharge and recurrence interval ³	e interval ³
Station			Drainage area	unregulated record		Disch	Discharge	Recurrence interval
number	Station name ¹	County	(mi²)	(water years)	Date	(ft³/s)	[(ft ³ /s)/mi ²]	(years)
01437000	Neversink River at Oakland Valley, NY	Sullivan	223	1928-53	11-26-50 08-19-55	23,300 23,800ah	104	25
01437500	Neversink River at Godeffroy, NY	Orange	307	1938-53	11-26-50 08-19-55	23,900 33,000ah	77.8 108	20 70
01440000	Flat Brook nr Flatbrookville, NJ	Sussex,NJ	64.0	1924-87	08-19-55	9,560a	149	>100b
Susquehar	Susquehanna River Basin							
01496370	Mink Creek at Richfield Springs, NY	Otsego	10.4	1969-86	03-19-86	498	47.9	10
00596410 4	Oaks Creek at Index, NY	Otsego	102	1930-32,37-87	10-17-77	3,320	32.5	99
01497500	Susquehanna River at Colliersville, NY	Otsego	349	1924-72	03-19-36	8,740	25.0	ß
01497800	Schenevus Creek at Schenevus, NY	Otsego	54.2	1963-76	03-05-64	2,200	40.6	10
01497805	Little Elk Creek nr Westford, NY	Otsego	3.73	1978-87	10-17-77	202	54.2	ĸ
01498500	Charlotte Creek at West Davenport, NY	Delaware	167	1938-75	09-22-38	14,000a	83.8	>100
01499000	Otego Creek nr Oneonta, NY	Otsego	108	1941-75	12-30-42	000′9	55.6	45
01500500	Susquehanna River at Unadilla, NY	Otsego	982	1935-36,38-87	03-18-36	31,300d	31.9	100
01501000	Unadilla River nr New Berlin, NY	Chenango	199	1924-72	03-05-64	6,940	34.9	8
01501015	Mill Brook at New Berlin, NY	Chenango	4.64	1975-86	03-30-77 10-17-77	450 450	97.0 97.0	10 10
01501140	Wharton Creek Trib nr Edmeston, NY	Otsego	2.02	1976-86	09-27-85	290	144	70
01501500	Sage Brook nr South New Berlin, NY	Chenango	0.70	1933-68	07-22-45	287	410	>100

Table 8. - Gaging stations and selected peak-discharge records used in the study (continued).

[Station locations shown in pl. 2. mi^2 = square miles, ft^3/s = cubic feet per second, > = greater than.]

				Period of	Maximum kn	own discharg	Maximum known discharge and recurrence interval ³	e interval ³
Station			Drainage area	unregulated record		Disc	Discharge	Recurrence interval
number	Station name ¹	County	(mi ²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
		:						
01502000	Butternut Creek at Morris, NY	Otsego	59.7	1938-87	10-17-77	5,980	100	>100
01502500	Unadilla River at Rockdale, NY	Chenango	520	1930-33,35, 1937-87	12-31-42	17,400	33.5	40
01502701	Susquehanna River at Afton, NY	Chenango	1,716	1972,77,79-87	03-07-79	42,000	24.5	15
01502714	Ouaquaga Creek nr Belden, NY	Broome	3.37	1975-86	08-02-86	496	147	35
01503000	Susquehanna River at Conklin, NY	Broome	2,232	1913-87	03-18-36	61,600	27.6	99
01503960	Electric Light Stream nr Morrisville, NY	Madison	7.21	1976-86	10-09-76	400	55.5	6
01503980	Chenango River at Eaton, NY	Madison	24.3	1964-65,67-87	03-06-64	2,350	2.96	100
01505000	Chenango River at Sherburne, NY	Chenango	263	1936,38-87	03-18-36	12,500	47.5	100
01505017	Cold Brook nr North Norwich, NY	Chenango	5.80	1975-862	03-05-79	300cd	51.7	9
01505500	Canasawacta Creek nr South Plymouth, NY	Chenango	57.9	1945-75,77	02-25-61	086′9	121	8
01507000	Chenango River at Greene, NY	Chenango	593	1937-87	12-31-42	18,900	31.9	22
01507500	Genegantslet Cr at Smithville Flats, NY	Chenango	82.3	1938-71	12-30-42	5,890	71.6	45
01508000	Shackham Brook nr Truxton, NY	Cortland	2.95	1933-68	06-03-47	487	165	35
01508500	Albright Creek at East Homer, NY	Cortland	6.81	1939-76	09-26-75	2,480a	364	>100
01508803	W Br Tioughnioga River at Homer, NY	Cortland	71.5	1967-68,73-87	10-28-81	2,710	37.9	25
01508946	Otter Cr Trib at St Hwy 222 nr Cortland, NY	Cortland	2.85	1976-86	10-28-81	069	242	9
01509000	Tioughnioga River at Cortland, NY	Cortland	292	1939-87	03-05-64	13,000	44.5	45

Footnotes at the end of table, (p. 66).

[(Station locations shown in pl. 2. mi^2 = square miles, tt^3/s = cubic feet per second, s = 1 = greater than.) Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

				Period of	Maximum 1	cnown dischar	Maximum known discharge and recurrence interval ³	ce interval ³
Station			Drainage area	unregulated		Disc	Discharge	Recurrence interval
number	Station name ¹	County	(mi²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
01510000	Otselic River at Cincinnatus, NY	Cortland	147	1938-64,70-87	12-30-42	8,390	57.1	35
01510500	Otselic River nr Upper Lisle, NY	Cortland	217	1935,37-69	07-08-35	15,400d	71.0	>100
01510610	Merrill Creek Trib nr Texas Valley, NY	Cortland	5.32	1976-81,83-87	09-21-77	290	148	æ
01511500	Tioughnioga River at Itaska, NY	Broome	730	1930-41	07-08-35	61,100	83.7	>100
01512500	Chenango River nr Chenango Forks, NY	Broome	1,483	1913-87	07-08-35	000′96	64.7	>100
01513500	Susquehanna River at Vestal, NY	Broome	3,941	1936-72,74-87	9236	107,000	27.2	45
01513712	Nanticoke Creek Trib at Nanticoke, NY	Broome	1.70	1975-86	07-11-76	1,780	1047	>100
01513790	Nanticoke Creek at Union Center, NY	Broome	200.7	1956,63-64, 1966-77	06-23-72	13,500a	149	45
01514000	Owego Creek nr Owego, NY	Tioga	185	1930-87	07-08-35	23,500	127	>100
01515000	Susquehanna River nr Waverly, NY	Bradford,PA	4,773	1936-87	0336	128,000d	26.8	35b
01516500	Corey Creek nr Mainesburg, PA	Tioga,PA	12.2	1954-87	06-23-72	5,580a	457	>100b
01516800	Manns Creek nr Mansfield, PA	Tioga,PA	3.01	1960-66,68-77	06-22-72	715a	238	25b
01517000	Elk Run nr Mainesburg, PA	Tioga,PA	10.2	1955-78	06-22-72	3,940a	367	>100b
01518000	Tioga River at Tioga, PA	Tioga,PA	282	1938-87	06-22-72	59,000a	506	>100b
01518500	Crooked Creek at Tioga, PA	Tioga,PA	122	1954-74	06-23-72	21,000a	172	>100b
01520000	Cowanesque River nr Lawrenceville, PA	Tioga,PA	298	1951-87	09-26-75	43,700	147	408
01520500	Tioga River at Lindley, NY	Steuben	771	1930-79	06-23-72	128,000a	166	>100

[Station locations shown in pl. 2. mi^2 = square miles, ft^3/s = cubic feet per second, > = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

				Period of	Maximum k	nown discha	Maximum known discharge and recurrence interval ³	e interval ³
Station	Station name ¹	County	Drainage area (mi²)	unregulated record (water years)	Date	Dis (ft ³ /s)	Discharge) [(ft³/s)/mi²]	Recurrence interval (years)
01521596	Big Creek nr Howard, NY	Steuben	6.32	1977-87	09-13-87	580	91.8	10
01522500	Karr Valley Creek at Almond, NY	Allegany	27.4	1935,37-68, 1971-73	06-23-72	10,900a	398	>100
01523500	Canacadea Creek nr Hornell, NY	Steuben	57.9	1927-28,35, 1939-87	07-08-35	21,000	363	>100
01526000	Tuscarora Creek nr South Addison, NY	Steuben	114	1937-70,72	06-23-72	18,700a	164	25
01526500	Tioga River nr Erwins, NY	Steuben	1,377	1919-78	06-23-72	190,000a	138	>100
01527000	Cohocton River at Cohocton, NY	Steuben	52.2	1951-87	06-23-72	2,260a	43.3	>100
01528000	Fivemile Creek nr Kanona, NY	Steuben	8.99	1937-87	06-23-72	5,110a	76.5	>100
01529500	Cohocton River nr Campbell, NY	Steuben	470	1919-87	07-08-35	41,100	87.4	>100
01530301	Cuthrie Run nr Big Flats, NY	Chemung	5.39	1976,79-87	06-19-76	800	148	10
01530500	Newtown Creek at Elmira, NY	Chemung	77.5	1938-87	06-23-72	4,000ac	51.6	20
01531000	Chemung River at Chemung, NY	Chemung	2,506	1904-87	06-23-72	189,000a	75.4	>100
01531250	N Br Sugar Creek Trib nr Columbia Cross Roads, PA	Bradford,PA	8.83	1963-72,75-81	06-22-72	2,410a	273	45b
01533250	Tuscarora Creek nr Silvara, PA	Bradford,PA	11.8	1963-87	06-22-72	1,610a	136	25b
Allegheny	Allegheny River Basin							
03008000	Newell Creek nr Port Allegany, PA	McKean,PA	7.79	1960-78	09-14-77	3,060	393	50b
03010500	Allegheny River at Eldred, PA	McKean,PA	550	1916-87	06-23-72	65,400a	119	>100b

Footnotes at the end of table, (p. 66).

[[Station locations shown in pl. 2. mi^2 = square miles, tt^3/s = cubic feet per second, > = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

				Period of	Maximum k	nown dischar	Maximum known discharge and recurrence interval3	e interval ³
Ctation			Drainage	unregulated -		Disc	Discharge	Recurrence interval
number	Station name¹	County	(mi²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
03010800	Olean Creek nr Olean, NY	Cattaraugus	198	1958-87	09-29-67	18,200	91.9	>100
03011000	Great Valley Creek nr Salamanca, NY	Cattaraugus	137	1951-68,72, 1977-87	09-28-67	28,600	209	>100
03011020	Allegheny River at Salamanca, NY	Cattaraugus	1,608	1904-87	06-23-72	73,000a	45.4	>200
03011800	Kinzua Creek nr Guffey, PA	McKean,PA	46.4	1966-87	06-22-72	5,220a	112	40
03013000	Conewango Creek at Waterboro, NY	Chautauqua	290	1939-87	04-07-47	8,600	29.7	45
03013800	Ball Creek at Stow, NY	Chautauqua	90.6	1974-87	09-14-79	2,000a	221	8
03015390	Hare Creek nr Corry, PA	Erie,PA	12.3	1964-87	09-19-77	2,240	182	90P
Lake Erie Basin	Basin							
04213040	Raccoon Creek nr West Springfield, PA	Erie, PA	2.53	1961-87	12-28-68	408	161	35b
04213200	Mill Creek at Erie, PA	Erie,PA	9.16	1964,69-87	07-15-70	1,730	189	30Þ
04213490	S Br Cattaraugus Creek nr Otto, NY	Cattaraugus	25.1	1963-87	09-14-79	4,350a	173	%
04213500	Cattaraugus Creek at Gowanda, NY	Erie	436	1940-87	03-07-56	34,600	79.4	99
04214040	Delaware Creek nr Angola, NY	Erie	8.32	1963-86	02-24-85	672	80.8	10
04214200	Eighteenmile Creek at North Boston, NY	Erie	37.2	1963-76	09-29-67	5,790	156	99
04214250	Smoke Creek at Lackawanna, NY	Erie	14.3	1953,55,63-68, 1970-74,76	03-01-55	2,330d	163	>100
04214400	Buffalo Creek nr Wales Hollow, NY	Erie	76.9	1963-74	09-28-67	9,260	120	25

Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

[Station locations shown in pl. 2. mi^2 = square miles, ft^3/s = cubic feet per second, > = greater than.]

				Period of	Maximum ki	nown dischar	Maximum known discharge and recurrence interval ³	e interval ³
Ctation			Drainage area	unregulated record		Disc	Discharge	Recurrence interval
number	Station name ¹	County	(mi²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
04214410	Hunter Creek at Colegrave, NY	Erie	14.0	1964-86	09-28-67	1,680	120	25
04214500	Buffalo Creek at Gardenville, NY	Erie	142	1937,39-87	0637	16,000cd	113	>100
04214980	Little Buffalo Cr at East Lancaster, NY	Erie	24.0	1963,66-73, 1976-80	03-17-63 09-14-79	2,140 2,140a	89.2 89.2	20 20
04215000	Cayuga Creek nr Lancaster, NY	Erie	96.4	1937,39-68, 1971-87	.97	18,000cd	187	>100
04215500	Cazenovia Creek at Ebenezer, NY	Erie	135	1941-87	03-01-55	13,500	100	35
Niagara River Basin	iver Basin							
04216400	Tonawanda Creek nr Johnsonburg, NY	Wyoming	23.7	1962-86	06-23-72	1,850e	78.1	25
04216418	Tonawanda Creek at Attica, NY	Wyoming	6.92	1972,78-87	06-23-72	6,000acd	78.0	40
04216500	Little Tonawanda Creek at Linden, NY	Genesee	22.1	1913-68,70- 72,1978-87	03-07-56	2,700	122	20
04216875	Little Tonawanda Cr Trib nr Batavia, NY	Genesee	1.02	1976-86	09-25-77	156	153	15
04217000	Tonawanda Creek at Batavia, NY	Genesee	171	1942,45-87	0342	10,000cd	58.5	>100
04217500	Tonawanda Creek nr Alabama, NY	Genesee	231	1956-87	03-31-60	2,980	34.5	25
04217700	Murder Creek at Pembroke, NY	Genesee	43.6	1962-86	03-18-63 02-24-85	1,870 1,870	42.9 42.9	15 15
04218000	Tonawanda Creek at Rapids, NY	Niagara	349	1956-65,79-87	04-01-60	6,280	18.0	20
04218518	Ellicott Creek below Williamsville, NY	Erie	81.6	1936,56-872	03-17-36	6,840cd	83.8	>100

Footnotes at the end of table, (p. 66).

[[Station locations shown in pl. 2. mi^2 = square miles, tt^3/s = cubic feet per second, > = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

							-	13
				Feriod of	Maximum K	nown discharg	Maximum known discharge and recurrence interval	e interval
Station			Drainage area	unregulated record		Disc	Discharge	Recurrence interval
number	Station name ¹	County	(mi²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
I olive Contracting	سأده والمالية							
Lake Onta	ITO DASIII							
04219645	Fourmile Creek nr Youngstown, NY	Niagara	4.88	1969-73,76-80, 1982-86	01-31-69	480	98.4	04
04219738	Eighteenmile Creek Trib nr Lockport, NY	Niagara	2.53	1977-86	02-19-81	365	144	15
04219900	Johnson Creek nr Lyndonville, NY	Orleans	87.7	1954,62-70, 1972-73,76-87	02-17-54	5,430d	61.9	>100
04219922	Oak Orchard Cr at Barrville Rd nr Elba, NY	Genesee	6.48	1976-86	03-22-78	205	31.6	15
9 04220150	Oak Orchard Creek at Medina, NY	Orleans	157	1962-76	03-20-63	1,480	9.43	15
04221500	Genesee River at Scio, NY	Allegany	308	1917-872	06-23-72	41,000a	133	>100
04221769	Black Cr at Hyder Flats Rd, Black Creek, NY	Allegany	10.7	1978-87	09-14-79	1,800a	168	9
04222600	Wiscoy Creek at Bliss, NY	Wyoming	22.0	1962-86	06-23-72	1,850a	84.1	45
04223000	Genesee River at Portageville, NY	Wyoming	984	1909-87	06-23-72	90,000ac	91.5	>100
04224700	Sugar Creek nr Ossian, NY	Livingston	10.0	1964-86	06-18-84	1,460	146	25
04224775	Canaseraga Creek above Dansville, NY	Livingston	88.9	1975-87	09-20-77	2,870	32.3	ស
04224807	Stony Brook Trib at South Dansville, NY	Steuben	3.15	1977-82,84-87	08-03-81	790	251	25
04224900	Mill Creek at Patchinville, NY	Steuben	4.22	1964-86	03-05-64	1,860	441	40
04225000	Canaseraga Creek nr Dansville, NY	Livingston	152	1911-12,16-68, 1971-76	06-23-72	9,600a	63.2	30

[Station locations shown in pl. 2. mi^2 = square miles, ft^3/s = cubic feet per second, > = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

				Period of	Maximum kn	own discharg	Maximum known discharge and recurrence interval ³	e interval ³
Station			Drainage area	unregulated record		Disch	Discharge	Recurrence interval
number	Station name ¹	County	(mi²)	(water years)	Date	(ft³/s)	[(ft³/s)/mi²]	(years)
04226000	Keshequa Cr at Craig Colony at Sonyea, NY	Livingston	68.3	1916,18-32, 1975-77	09-25-77	6,280	91.9	15
04227500	Genesee River nr Mount Morris, NY	Livingston	1,424	1890,93-94, 1904-06,09-14, 1916-51	05-17-16	55,100	38.7	02
04229500	Honeoye Creek at Honeoye Falls, NY	Monroe	196	1946-70,72-87	06-23-72	6,600ac	33.7	>100
04230380	Oatka Creek at Warsaw, NY	Wyoming	39.1	1964-87	06-23-72	4,010a	103	>100
04230500	Oatka Creek at Garbutt, NY	Monroe	200	1946-87	03-31-60	7,050	35.2	45
04231000	Black Creek at Churchville, NY	Monroe	130	1946-87	03-31-60	4,880	37.5	>100
04231040	Hotel Cr at Griffin Rd nr Churchville, NY	Monroe	4.57	1976-86	03-05-79	88	19.3	99
04232000	Genesee River at Rochester, NY	Monroe	2,467	1785,1836-37, 1854,57,65,67, 1873,75,79,89, 1896,1902,13, 1916,20-51	031854 03-18-1865	54,000d 54,000cd	21.9	>100
042320527	Mill Creek Trib nr Webster, NY	Monroe	1.95	1971-72,76-86	09-29-86	211	108	25
042320578	Bear Creek at Ontario, NY	Wayne	6.74	1971-73,75-87	03-05-79	189	28.0	25
04232071	Second Creek Trib at Alton, NY	Wayne	1.07	1970,73,76-86	09-19-86	57	53.3	6
04232087	Red Creek Trib No. 16 nr Red Creek, NY	Cayuga	2.90	1969,76-86	01-31-69	250d	86.2	<u>0</u> 5
04232100	Sterling Creek at Sterling, NY	Cayuga	44.4	1958-87	03-22-80	1,760	39.6	96
04232460	Sugar Creek at Guyanoga, NY	Yates	28.9	1966-87	01-20-86	459	15.9	6

Footnotes at the end of table, (p. 66).

[[Station locations shown in pl. 2. $mi^2 = square miles$, $ft^3/s = cubic feet per second$, s = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

				Period of	Maximum ki	nown dischar	Maximum known discharge and recurrence interval ³	e interval ³
Station			Drainage area	unregulated record		Disc	Discharge	Recurrence interval
number	Station name ¹	County	(mi²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
04232630	Kendig Creek nr MacDougall, NY	Seneca	13.8	1965-87	07-10-68	953	69.1	25
04233000	Cayuga Inlet nr Ithaca, NY	Tompkins	35.2	1937-87	06-23-72	4,800a	136	8
04233255	Cayuga Inlet at Ithaca, NY	Tompkins	86.7	1971-72,75-87	06-23-72	11,800a	136	100
04233310	Sixmile Creek above Ithaca, NY	Tompkins	42.0	1967-69,71-73, 1976-86	10-28-81	2,600	181	25
04233676	Virgil Creek at Mill St at Dryden, NY	Tompkins	20.7	1966-70,72, 1975-86	10-28-81	4,670	226	>100
, 04233700	Virgil Creek at Freeville, NY	Tompkins	40.3	1974-86	10-27-81	7,000c	174	>100
04234000	Fall Creek nr Ithaca, NY	Tompkins	126	1926-87	07-08-35	15,500c	123	>100
042340202	Cayuga Lake Trib No. 8 nr Jacksonville, NY	Tompkins	1.36	1977-86	02-15-84	144	106	6
042340588	Yawger Creek Trib nr Auburn, NY	Cayuga	1.76	1976-86	11-27-79	88	50.0	15
04234138	Schaeffer Creek nr Canandaigua, NY	Ontario	7.84	1977-87	03-05-79	520c	6.3	25
04234200	Mud Creek at East Victor, NY	Ontario	64.2	1958,61-68,72, 1976-87	06-22-72	1,800a	28.0	15
04234363	Marbletown Creek Trib nr Newark, NY	Wayne	0.58	1976-86	02-17-76	31	53.4	25
04235250	Flint Creek at Phelps, NY	Ontario	102	1960-87	03-30-60	2,940	28.8	8
04235255	Canadaigua Outlet Trib nr Alloway, NY	Ontario	2.94	1978-87	01-20-86	26	33.0	10
04235276	Black Brook at Tyre, NY	Seneca	19.0	1966-73,75-87	12-14-77	786	41.4	35
04235300	Owasco Inlet at Moravia, NY	Cayuga	106	1961-70,72	06-24-69	6,000c	9:99	10

Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

[Station locations shown in pl. 2. $mi^2 = square miles$, $ft^3/s = cubic feet per second$, s = greater than.]

				Period of	Maximum k	nown dischar	Maximum known discharge and recurrence interval ³	e interval ³
Station			Drainage area	unregulated record		Disc	Discharge	Recurrence interval
number	Station name ¹	County	(mi ²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
04242500	E Br Fish Creek at Taberg, NY	Oneida	188	1924-87	12-29-84 12-29-84	21,600i 16,000c	115 85.1	>100 80
04242795	Canada Creek Trib nr Lee Center, NY	Oneida	1.34	1977-86	10-09-76	165	123	20
04243500	Oneida Creek at Oneida, NY	Oneida	113	1950-87	10-09-76	9,110	9.08	35
04245000	Limestone Creek at Fayetteville, NY	Onondaga	85.5	1940-87	10-28-81	7,490	97.8	45
04245200	Butternut Creek nr Jamesville, NY	Onondaga	32.2	1959-87	07-03-74	2,820	97.8	8
04245840	Scriba Creek nr Constantia, NY	Oswego	38.4	1966-69,71-87	09-26-75	1,310a	34.1	20
04249050	Catfish Creek at New Haven, NY	Oswego	31.7	1962-87	03-18-73	1,560	49.2	99
042490673	N Br Grindstone Cr nr Altmar, NY	Oswego	11.2	1976-87	03-13-77	482	43.0	Ŋ
04250750	Sandy Creek nr Adams, NY	Jefferson	128	1958-87	02-25-85	2,690	60.1	15
04252500	Black River nr Boonville, NY	Oneida	304	1911-87	04-18-82 12-30-84	12,800 12,800	42.1 42.1	<i>3</i> , <i>3</i> ,
04254500	Moose River at McKeever, NY	Herkimer	363	1902,05-70,82, 1985,87	06-03-47 12-29-84	18,700f 15,800d	51.5 43.5	>100
04256000	Independence River at Donnattsburg, NY	Lewis	88.7	1928-872	12-30-84	9,420	106	>100
04256040	Mill Creek Trib nr Lowville, NY	Lewis	1.66	1976-86	03-02-79	312	188	6
04258700	Deer River at Deer River, NY	Lewis	94.8	1930-872	09-01-41	15,400cd	162	>100
04260575	Horse Creek Trib nr Dexter, NY	Jefferson	4.59	1976-86	03-13-77	700	152	15

Footnotes at the end of table, (p. 66).

[[Station locations shown in pl. 2. mi^2 = square miles, tt^3/s = cubic feet per second, > = greater than.] Table 8. - Gaging stations and selected peak-discharge records used in the study (continued).

;					Period of	Maximum ki	nown dischar	Maximum known discharge and recurrence interval ³	e interval ³
ά	Station number	Station name ¹	County	Drainage area (mi²)	unregulated record (water years)	Date	Dise (ff ³ /s)	Discharge) [(ft³/s)/mi²]	Recurrence interval (years)
			The state of the s						
S	t. Lawrenc	St. Lawrence River Main Stem							
Ö	04262500	W Br Oswegatchie R nr Harrisville, NY	St. Lawrence	244	1917-87	03-15-77	2,080	29.0	%
Ö	04263000	Oswegatchie River nr Heuvelton, NY	St. Lawrence	965	1917-87	04-06-60	19,600	20.3	8
Ö	04263445	Birch Creek at Pierces Corners, NY	St. Lawrence	1.56	1976-86	04-03-78	85	54.5	10
Ö	04264300	Brandy Brook nr Waddington, NY	St. Lawrence	27.0	1959-67,71-86	03-13-77	941	34.9	25
	04264700	N Br Grass River nr Clare, NY	St. Lawrence	46.3	1959-69,85	12-29-84	1,420d	30.7	40
త 64	04265000	Grass River at Pyrites, NY	St. Lawrence	333	1925-77,85	11-18-27	8,300c	24.9	20
Ŏ	04265100	Elm Cræk nr Hermon, NY	St. Lawrence	32.6	1959-87	04-06-74	1,270c	39.0	25
Ŏ	04265200	Tanner Creek at Stellaville, NY	St. Lawrence	30.3	1959-69	09-05-60	1,580	52.1	20
Ö	04265300	Little River nr Canton, NY	St. Lawrence	42.4	1959-76,85	04-05-74	3,300	77.8	90
Ó	04267600	Cold Brook nr South Colton, NY	St. Lawrence	18.7	1962-76,85	03-29-63	892	41.1	35
Ö	04267700	Parkhurst Brook nr Potsdam, NY	St. Lawrence	16.8	1959-77	04-05-74	1,200	71.4	20
Ó	04267800	Trout Brook at Allen Corners, NY	St. Lawrence	54.2	1959-86	04-05-74	3,350	61.8	%
Ó	04268200	Plum Brook at Grantville, NY	St. Lawrence	43.9	1959-68,71-87	03-30-63	1,920	43.7	20
Ó	04268720	Hopkinton Brook at Hopkinton, NY	St. Lawrence	20.0	1962,64-69, 1971-86	12-29-84	804	40.2	15
Ó	04268800	W Br St. Regis River nr Parishville, NY	St. Lawrence	171	1959-87	12-29-84	2,960	34.9	8
Ö	04269000	St. Regis River at Brasher Center, NY	St. Lawrence	612	1911-87	04-06-37	16,800	27.5	09

[Station locations shown in pl. 2. mi^2 = square miles, ft^3/s = cubic feet per second, > = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

				Period of	Maximum kr	nown dischar	Maximum known discharge and recurrence interval3	e interval ³
Station			Drainage area	unregulated record		Disc	Discharge	Recurrence interval
number	Station name ¹	County	(mi ²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
04269050	Allen Brook nr Brasher Falls, NY	St. Lawrence	16.0	1962-86	12-09-80	1,270	79.4	25
04269100	Lawrence Brook nr Moira, NY	Franklin	25.7	1959-64,69-86	98-80-80	1,940c	75.5	9
04269500	Deer River at Brasher Iron Works, NY	St. Lawrence	182	1913-16,59-80, 1985	01-17-13	6,700	53.3	>100
04270000	Salmon River at Chasm Falls, NY	Franklin	132	1926-82,85,87	12-29-84	3,700d	28.0	>100
04270100	W Br Deer Cr at Fort Covington Center, NY	Franklin	32.4	1962-74,76-86	04-05-74	2,050	63.3	20
04270150	E Br Deer Cr at Fort Covington Center, NY	Franklin	23.9	1962,66-74, 1976-86	03-14-77	1,740	72.8	29
04270162	E Br Little Salmon River nr Skerry, NY	Franklin	7.11	1978-87	06-20-78	240	33.8	10
04270200	Little Salmon River at Bombay, NY	Franklin	92.2	1959-87	04-04-74	3,250	35.2	25
04270700	Trout River at Trout River, NY	Franklin	107	1960-87	04-05-74	6,490	60.7	8
04270800	English River nr Mooers Forks, NY	Clinton	40.8	1960-69,71-79	03-15-74	2,000c	49.0	99
04271500	Great Chazy River at Perry Mills, NY	Clinton	247	1929-68,85,87	04-07-37	9000	24.3	25
04273500	Saranac River at Plattsburgh, NY	Clinton	809	1928,44-87	04-08-28	11,500	18.9	09
04273700	Salmon River at South Plattsburgh, NY	Clinton	61.9	1960-86	12-14-83	1,890	30.5	30
04274000	W Br Ausable River nr Lake Placid, NY	Essex	116	1920-68,83-87	09-22-38	10,800a	93.1	>100
04275000	E Br Ausable River at Au Sable Forks, NY	Essex	198	1925-87	09-22-38	20,100a	102	>100
04275500	Ausable River nr Au Sable Forks, NY	Clinton	448	1911-68	09-22-38	24,200a	54.0	80

Footnotes at the end of table, (p. 66).

[[Station locations shown in pl. 2. mi^2 = square miles, tt^3/s = cubic feet per second, > = greater than.] Table 8. -- Gaging stations and selected peak-discharge records used in the study (continued).

l					Period of	Maximum k	nown discha	Maximum known discharge and recurrence interval ³	e interval ³
U.	Station			Drainage	unregulated record		Dis	Discharge	Recurrence interval
· =	number	Station name ¹	County	(mi ²)	(water years)	Date	(ft ³ /s)	[(ft ³ /s)/mi ²]	(years)
0	04276200	Bouquet River at New Russia, NY	Essex	37.6	1949-80	11-26-79	6,400c	170	>100
0	04276500	Bouquet River at Willsboro, NY	Essex	275	1924-68,85,87	10-01-24	11,800	42.9	100
0	04278300	Northwest Bay Brook nr Bolton Landing, NY	Warren	23.4	1966-87	02-11-81	1,770	75.6	25
Γ'	1 111	near	ري ه	Hurricane-related storm.	torm.				
	Br =	Branch	Þ	Based on weighted discharges obtained through New York generalized	discharges obtair	ned through N	Vew York gen	eralized	
	ŗ.	Creek		least-squares full-regression equations. Out-of-state	gression equatio	ns. Out-of-sta	ate		
	R =	River		flood-frequency report and associated relations should be consulted.	ort and associate	d relations sho	ould be consu	lted.	
	Trib =	Tributary	ပ	Discharge is an estimate.	imate.				
	II Z	North	ъ	Discharge is a historic peak obtained outside the period of systematic record.	ric peak obtaine	d outside the	period of syst	ematic record.	
6	S	South	e	Stage was nearly 2 feet higher on 12-31-48; discharge unknown.	feet higher on 12	-31-48; dischar	ge unknown.		
66	Ш	East	¥	Discharge affected by dam failure.	by dam failure.		1		
•	= M	West	80	Discharge estimated based on peak stage information supplied by local residents.	based on peak	stage informa	tion supplied	by local residen	ts.
. 7	2 Annual	Annual peak-discharge record was combined	ᄯ	Discharge determined during a period of regulation; effect of storage undetermined	ed during a peric	od of regulatio	on; effect of sto	orage undetermi	ned.
	with rec	with record (adjusted for drainage area) from a	••	Result of release of upstream debris jam; reconstructed maximum discharge was 16,000 ft ³ /s	apstream debris j	am; reconstruc	ted maximur	n discharge was	16,000 ft³/s
	nearby §	nearby gaging station on the same stream.		after adjusting for storage effects.	torage effects.				

Table 9. --Selected flood characteristics for gaging stations used in the study.

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

Peak-discharge statistics (log 10 units)	Station record Years of peak-	Skew	2.820 0.275 0.383 25 39	3.149 .195490 15 25	3.375 .182446 16 27	2.216 .236 .912 12	3.503 .269 .450 57	2.861 .254376 25	3.565 .131 .066 62
arge statis		Skew	0.733	.617	.057	.703	.487	.072	.094
Peak-disch	WRC estimate	deviation	0.312	.169	.189	.236	.269	.254	.131
	WE	Mean	2.845	3.183	3.388	2.216	3.503	2.861	3.565
		200	10500 5780 8810	6230 8500 7320	8850 11500 10100	1240 1150 1190	27300 22700 26400	4130 7300 5270	9020
(puo		100	5400 3750 4870	4460 5770 5040	6870 7670 7210	761 730 745	16700 14900 16400	2930 4530 3450	7540
et per se	l (years)	20	3980 3070 3700	3820 4820 4250	6070 6360 6190	607 592 599	13200 12300 13100	2480 3620 2830	6910
(cubic fe	Recurrence interval	25	2890 2470 2770	3240 3980 3530	5290 5190 5250	478 471 475	10400 10000 10300	2060 2840 2280	6270
Peak-discharge (cubic feet per second)	Recurren	10	1820 1790 1810	2550 2970 2690	4290 3820 4130	339 336 337	7220 7370 7240	1550 1960 1650	5410
Peak-c		25	1230 1350 1250	2080 2300 2140	3530 2930 3370	252 252 252	5250 5660 5290	1190 1420 1240	4720
		2	641 841 662	1460 1490 1470	2430 1860 2340	154 155 154	3030 3630 3060	722 818 732	3650
Station	number and	region	01199050 ^a 3	01199400 3	01199420 3	01199477 3	01200000	01208990a 3	01312000

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

Years of peak-	discharge record	Gaged Historic	36 75	52			45	23	23	92
, X	dise	.	.211 3	182 5	8 800.	2 650.	.130 4		579 2	.271 7
s)	<u> </u>	on Skew	.	1	O.	Ŏ.	Τ.	-1.335	ŗĊ	.2
g 10 units) Station record	Standard	deviation	.161	.130	.143	.139	.183	.171	.192	.148
istics (log		Mean	3.574	3.912	4.124	4.306	3.623	3.049	2.432	4.123
arge stat		Skew	.050	080	.046	.338	.173	224	188	.276
Peak-discharge statistics (log 10 units) WRC estimate Station reco	Standard	deviation	.152	.130	.143	.133	.183	.140	.192	.148
second)		Mean	3.568	3.912	4.124	4.309	3.623	3.063	2.432	4.123
(cubic feet per second)		200	10300 7660 9680	18800 16300 18400	35000 33300 34800	55600 57700 55900	15400 11800 14400	2680 3100 2820	872 1070 952	39800
(cubic feet per second)		100	8430 6240 7990	16100 13200 15700	28900 26900 28700	44700 46200 44900	11800 9310 11200	2320 2530 2380	710 846 759	31500
ge (cubic feet per second)		20	7640 5680 7280	14900 11900 14500	26400 24400 26200	40200 41800 40300	10300 8270 9870	2160 2300 2200	640 750 677	28100
e (cubic fo		25	6850 5130 6600	13700 10700 13400	23800 22100 23700	36000 37500 36100	8980 7270 8640	1980 2070 2000	569 658 597	24900
discharge Recurrer		10	5790 4320 5610	12000 9000 11700	20300 18600 20200	30400 31400 30500	7240 5990 7050	1730 1740 1730	471 535 487	20800
Peak-		S	4950 3690 4850	10500 7670 10300	17500 15900 17400	26200 26800 26200	5950 5030 5840	1520 1470 1510	393 445 403	17600
		2	3690 2750 3640	8200 5740 8110	13300 12000 13300	20000 20000 20000	4140 3650 4100	1170 1080 1160	274 316 280	13100
Station	hydrologic	region	01313500 2	01314000 2	01315500 2	01318500 2	01319000 1	01319800 2	01319950 1	01321000¢ 1

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	.134	.134 .123 .123 .165	.134 .123 .165 .190 .190	.134 .123 .123 .165 .190 .220	.134 .123 .165 .190 .165
4.200	4.558	4.558 2.823 3.519	4.200 4.558 2.823 3.519	4.200 4.558 2.823 3.519 3.801	4.200 4.558 2.823 3.519 3.801 1.452
.134 .479					·
46200 4.200 79100 58900 106000 4.558 118000					
36200 62300 45000 81400 93400	36200 62300 45000 81400 93400 85000 1600 1770	36200 62300 45000 81400 93400 85000 1770 1640 15400 9980	36200 62300 45000 81400 93400 85000 1770 1640 9120 15400 20400 20600 20600	36200 62300 45000 81400 93400 85000 1770 1640 9980 20400 20400 20400 20400 105 148	36200 62300 45000 81400 93400 85000 1600 1640 9980 20400 20600 20600 20400 20600 20600 20600 20600 20600 20600 20600 20600
4520	53.5	1 4 R 4			
	1090 1290 1450 1600 1960 2.835 .156 .039 2.823 999 1300 1530 1770 2410 1080 1290 1470 1640 2070	1090 1290 1450 1600 1960 2.835 .156 .039 2.823 999 1300 1530 1770 2410 1080 1290 1470 1640 2070 5440 6790 7910 9120 12400 3.518 .164 .516 3.519 9530 11800 13600 15400 20200 20200 2780 2780 7280 9862 9980 13700	1090 1290 1450 1600 1960 2.835 .156 .039 2.823 999 1300 1530 1770 2410 2410 .156 .039 2.823 5440 6790 7910 9120 12400 3.518 .164 .516 3.519 9530 11800 13600 15400 20200 .518 .164 .516 3.519 10900 14300 17200 20400 29900 3.796 .183 .690 3.801 12600 15800 18100 20600 27300 11100 14500 17300 20400 29400 .183 .690 3.801	1090 1290 1450 1600 1960 2.835 .156 .039 2.823 999 1300 1530 1770 2410 2.835 .156 .039 2.823 5440 6790 7910 9120 12400 3.518 .164 .516 3.519 9530 11800 13600 15400 20200 3.796 .183 .690 3.801 10900 14300 17200 20400 29900 3.796 .183 .690 3.801 12600 15800 17300 20400 29400 3.796 .183 .690 3.801 55 73 88 105 151 1.452 .220 .359 1.452 61 82 100 119 168 197 .220 .359 1.452	1090 1290 1450 1600 1960 2.835 .156 .039 2.823 999 1300 1530 1770 2410 2835 .156 .039 2.823 5440 6790 7910 9120 12400 3.518 .164 .516 3.519 9530 11800 13600 15400 20200 3.796 .183 .690 3.801 10900 14300 17200 20400 29900 3.796 .183 .690 3.801 12600 15800 18100 20400 29400 3.796 .183 .690 3.801 11100 14500 17200 20400 29400 3.796 .183 .690 3.801 136 73 88 105 151 1.452 .220 .359 1.452 86 111 129 148 197 .165 .165 .106 .165 .165 .100 .106 .2

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from log-Pearson type III analyses; middle line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Peak-d	Peak-discharge (cubic feet per second) Recurrence interval (years)	(cubic fee	et per seco	(puc		WE	Peak-discharge statistics (log 10 units) WRC estimate Station reco	arge statis	stics (log	og 10 units) Station record		Years of peak-	f peak-
5	1	10	25	ક્ક	100	200	Mean	Standard deviation	Skew	Mean	Standard deviation	Skew	discharge record Gaged Historic	discharge record Gaged Historic
	1										i i			
2300 2420 2310		2820 2910 2830	3550 3530 3550	4160 3970 4140	4820 4400 4770	6600 5490 6430	3.222	.172	.485	3.222	.172	.536	61	1
164 124 158		222 154 206	314 192 282	400 219 342	502 245 413	823 310 621	2.023	.243	.654	2.023	.243	1.055	17	1
826 604 781		1080 730 977	1550 893 1330	2000 1010 1600	2510 1120 1920	3900 1420 2710	2.681	.191	.021	2.681	.191	688	12	1
3900 3370 3870		5150 4170 5070	7050 5280 6880	8730 6120 8400	10700 7020 10200	16300 9450 15200	3.398	.238	.447	3.392	.233	.402	25	118
6190 5250 6130		7890 6440 7750	10400 8110 10100	12500 9350 12000	14900 10700 14200	21500 14200 20100	3.623	.208	.439	3.623	.208	.425	47	;
2270 1960 2250		2840 2400 2790	3640 3010 3550	4300 3460 4150	5000 3920 4790	6880 5160 6490	3.190	.202	.273	3.181	.220	268	38	:
142 175 149		158 214 176	178 264 210	192 300 240	207 335 267	240 426 337	2.068	.100	.191	2.050	.134	-1.097	10	:
3080 3060 3080		3950 3740 3920	5240 4660 5160	6350 5340 6170	7610 6040 7300	11200 7900 10400	3.322	.207	.522	3.300	.218	370	36	20

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	discharge record Skew Gaged Historic	047 55	.844 76 91	1.049 42 119	823 18	738 20 86	1.355 13	517 12	
10 units)	Station record		.204	.203	.132	.294	.100	.159	.181	,
stics (log	2.2	Mean	3.521	4.077	4.622	2.840	3.914	1.921	1.630	è
arge stati	0	Skew	.074	.720	.589	230	.111	.628	053	t
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation	.204	.200	.118	.294	.111	.159	.181	,
	A	Mean	3.521	4.075	4.615	2.840	3.922	1.921	1.630	0
		200	13400 14500 13600	67300 39300 63800	110000 162000 121000	4030 4640 4300	18000 21200 19400	317 442 381	137 166 151	
(puo		100	10200 11300 10300	44100 29600 42600	87100 128000 94600	2980 3570 3220	15500 17000 16100	231 326 277	110 126 116	2001
et per sec	(years)	50	8870 10000 9020	36300 25900 35300	78200 115000 84400	2560 3120 2760	14300 15200 14700	199 280 234	99 110 103	777
(cubic fe	Recurrence interval (years)	25	7640 8840 7760	29600 22500 29100	69800 103100 74400	2140 2680 2300	13200 13500 13300	170 234 194	8888	10500
Peak-discharge (cubic feet per second)	Recurren	10	6080 7200 6170	22000 18000 21800	59200 85900 62200	1620 2120 1740	11600 11200 11500	136 180 150	£ 4 £	11000
Peak-		5	4920 5980 4970	17100 14700 17000	51200 73500 52900	1230 1690 1310	10400 9530 10200	112 140 118	61 59 60	0000
		2	3300 4220 3330	11300 10300 11300	40100 55300 40900	710 1110 750	8330 7090 8130	80 89 81	43 39 42	0070
Station	number and	hydrologic region	01334000 ^a 2	01334500a 2	01335500acd 2	01342730 5	01342800 1	01346820 5	01347460 2	4000

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from log-Pearson type III analyses; middle line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

ak-d	k-discharge Recurrer	اخاما	ischarge (cubic fee Recurrence interval (et per sec (years)	(puo		M	Peak-discharge statistics (log 10 units) WRC estimate Station reco	irge statis	stics (log	Station record	1 1	Years of peakdischarge record	eak-
2 5 10 25 50 100	25 50	55 20		100	-	200	Mean	deviation	Skew	Mean	deviation	Skew	Gaged Historic	toric
246 370 458 576 668 764 250 360 435 529 593 657 246 368 451 561 639 720	458576668435529593451561639	668 593 639		764 657 720		1000 813 914	2.391	.210	.015	2.391	.210	383	13	;
4780 7000 8540 10500 12100 13700 2480 3740 4670 5880 6840 7810 4670 6690 8010 9700 11000 12300	8540 10500 12100 4670 5880 6840 8010 9700 11000	12100 6840 11000	• • • • • • • • • • • • • • • • • • • •	13700 7810 12300		17500 10100 15500	3.679	.197	018	3.679	.197	182	38	;
88 131 164 211 250 293 65 102 131 170 203 237 84 123 153 194 228 265	164 211 250 131 170 203 153 194 228	250 203 228		233	w v 10	409 320 361	1.956	.197	.368	1.956	.197	.412	12	:
942 1760 2550 3910 5270 6970 889 1620 2260 3260 4150 5120 928 1700 2400 3540 4600 5820	2550 3910 5270 2260 3260 4150 2400 3540 4600	5270 4150 4600		6970 5120 5820		12800 7820 9610	3.006	.301	.642	2.966	.263	.671	14	37
14100 25000 33900 47300 58800 71700 11500 19400 25800 35300 43500 52300 13900 24400 32700 45000 55500 67300	33900 47300 58800 25800 35300 43500 32700 45000 55500	58800 43500 55500		71700 52300 67300		108000 76100 100000	4.156	.289	.126	4.156	.289	.057	78	1
339 702 1020 1510 1940 2420 603 1040 1400 1940 2400 2910 416 853 1220 1770 2240 2740	1020 1510 1940 1400 1940 2400 1220 1770 2240	1940 2400 2240		2420 2910 2740		3770 4260 4100	2.524	.381	960'-	2.524	.381	901	12	1
835 1130 1320 1560 1740 1930 623 971 1250 1630 1940 2250 754 1050 1280 1610 1890 2180	1320 1560 1740 1250 1630 1940 1280 1610 1890	1740 1940 1890		1930 2250 2180		2360 3010 2910	2.923	.153	.054	2.923	.153	395	13	;
378 649 874 1210 1510 1850 292 466 603 798 960 1130 362 591 768 1020 1240 1480	874 1210 1510 603 798 960 768 1020 1240	1510 960 1240		1850 1130 1480		2820 1570 2150	2.590	.270	.257	2.590	.270	.152	22	;

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from log-Pearson type III analyses; middle line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	discharge record Gaged Historic	87	1	1	75	39	;	:	;
	Years	discharg Gaged	61	26	17	45	18	59	10	10
		Skew	813	.257	.114	.693	.248	-1.378	705	-1.093
10 units)	Station record	Standard deviation	.177	.196	.176	.234	.156	.254	.167	.169
stics (log	S	Mean	3.437	2.386	1.981	3.375	3.603	2.836	3.222	3.035
ırge stati		Skew	.161	306	.243	.978	.479	.146	989.	.188
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation	.157	.196	.176	.203	.177	.198	.120	.126
	M	Mean	3.447	2.386	1.981	3.379	3.625	2.857	3.247	3.058
		500	8500 10300 9020	1050 871 962	347 638 461	15900 9950 14500	17300 18700 18100	2900 2820 2870	4840 6380 5740	2810 4710 3920
(puo		100	6770 7740 7040	766 626 700	264 489 342	9740 6550 9070	12500 14000 13300	2180 2020 2130	3800 4220 4030	2330 3360 2890
et per sec	(years)	50	6060 6720 6230	659 532 602	232 431 295	7800 5400 7330	10800 12100 11500	1900 1730 1850	3400 3490 3450	2130 2870 2520
(cubic fee	Recurrence interval (years)	25	5370 5720 5450	559 441 511	201 374 246	6190 4380 5860	9170 10300 9750	1630 1460 1590	3020 2860 2940	1930 2430 2180
Peak-discharge (cubic feet per second)	Recurrence	10	4470 4500 4480	438 333 401	162 296 192	4470 3190 4280	7230 8100 7610	1300 1120 1260	2550 2130 2360	1660 1880 1760
Peak-c		5	3780 3600 3760	352 257 325	134 238 149	3410 2430 3290	5870 6470 6080	1050 893 1020	2200 1670 2000	1450 1510 1470
		2	2770 2390 2740	238 161 225	94 157 100	2220 1530 2180	4080 4280 4120	712 597 701	1710 1120 1570	1130 1040 1110
Station	number and	hydrologic region	01351000b 4	01354300 4	01355405 2	01358500 3	01359519b 4	01359750 3	01359902 3	01359924 3

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	f peak-	e record	Historic		79	:	28	82	37	:	1	37
	Years of peak-	discharge record	Gaged Historic		41	20	19	89	11	24	29	13
			Skew		1.055	792	.633	008	491	.470	072	438
10 units)	Station record	Standard	deviation		.251	.304	.257	.255	.196	.271	.231	.238
tics (log	St		Mean		3.773	3.243	2.221	3.581	3.129	3.072	2.917	2.665
rge statis		ļ	Skew		.817	.155	069.	.047	.506	.456	.738	.077
Peak-discharge statistics (log 10 units)	WRC estimate	Standard	deviation		.238	.257	.284	.253	.171	.271	.200	.257
	M		Mean		3.764	3.267	2.240	3.579	3.170	3.072	2.932	2.693
	1		200		48600 45500 47800	11300 6900 9490	1970 2490 2260	21000 21500 21100	5860 7710 7150	10000 7990 8980	4870 7610 5760	2870 3260 3200
(puo			100		28600 27600 28400	7810 4630 6620	1090 1610 1370	15000 15500 15100	4270 5550 5140	6170 5240 5710	3180 4730 3630	2020 2360 2290
et per sec	(vears)		20		22400 21900 22300	6530 3850 5580	834 1290 1070	12700 13100 12800	3680 4720 4360	4910 4240 4600	2610 3800 2940	1700 2000 1930
Peak-discharge (cubic feet per second)	Recurrence interval (years)		25		17400 17200 17400	5360 3160 4630	626 1010 811	10600 10900 10700	3140 3920 3630	3850 3330 3630	2120 3010 2350	1410 1660 1590
lischarge	Recurren		10		12100 12000 12100	3980 2330 3510	415 687 530	8030 8220 8060	2490 2970 2760	2690 2310 2550	1580 2130 1700	1060 1240 1170
Peak-c			5		8910 8870 8910	3020 1800 2740	291 485 358	6190 6350 6210	2030 2300 2160	1960 1660 1870	1230 1590 1290	810 944 879
			2		5400 5410 5400	1820 1150 1730	161 261 181	3780 3960 3790	1430 1440 1430	1130 910 1090	808 972 823	490 579 523
Station	number and	hvdrologic	region	İ	01361000 3	01361200 3	01361453 4	01361500 4	01361570 4	01361900 4	01362100 3	01362197 4A

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	discharge record Gaged Historic	114	1	:	1	80	:	:	52
	Years o	discharg Gaged	24	35	51	49	19	21	25	44
		Skew	022	.280	074	.221	.417	578	.571	1.184
10 units)	Station record	Standard deviation	.323	.327	.261	.287	.268	.246	.169	.171
stics (log	St	Mean	3.583	4.154	3.430	3.082	3.677	3.270	4.080	3.257
rge stati		Skew	.077	.323	.046	.289	.496	056	.539	.892
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation	.323	.327	.261	.287	.274	.246	.169	.167
	M	Mean	3.589	4.154	3.430	3.082	3.686	3.270	4.080	3.255
-		500	35400 27000 29800	167000 82400 136000	15700 26500 19300	10200 10900 10400	43600 30200 36000	9140 13400 11400	47700 62400 55100	8240 18800 10800
(puo		100	22900 18000 19900	98000 55000 83900	11100 17000 12900	6470 7150 6690	26300 20900 23400	6790 9520 8220	34600 45700 39900	5600 12000 6970
et per sec	(years)	50	18500 14800 16400	76000 45100 66700	9360 13600 10600	5200 5820 5390	20800 17500 19100	2860 8060 6960	29800 39300 34200	4690 9760 5700
(cubic fee	Recurrence interval (years)	25	11800	57700 36000 52000	7770 10600 8500	4100 4610 4240	16200 14300 15300	4960 6670 5750	25400 33200 28700	3910 7810 4630
Peak-discharge (cubic feet per second)	Recurren	10	10100 8430 9400	38300 25800 35700	5820 7250 6130	2870 3240 2950	11200 10500 10900	3830 5040 4310	20200 25800 22200	3010 5580 3410
Peak-c		rv	7240 6180 6890	26500 19000 25300	4450 5150 4560	2090 2360 2140	8080 7990 8050	3000 3900 3290	16500 20500 17700	2420 4190 2630
		2	3850 3550 3790	13700 10900 13500	2680 2760 2690	1170 1320 1180	4610 4800 4650	1870 2420 1980	11600 13400 11900	1700 2580 1760
Station	number and	hydrologic region	01362198 ^c 4	01362500 ^c	01365000 4	01365500 4	01366500 ^d 4	01366650 4	01367500 ^d 4	01368000

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

1000	r peak-	ge record Historic		52	;	:	89	;	:	;	:
)	rears or peak-	discharge record Gaged Historic		26	40	42	49	27	છ	17	26
		Skew		1.238	.488	.242	869.	050	.456	367	879
10 units)	Station record	Standard deviation		.234	.176	.197	.166	.253	.169	.223	.279
tics (log	X.	Mean		3.233	3.093	2.580	3.617	3.540	4.033	2.393	3.227
rge statis	ļ	Skew		.853	.521	.354	.632	.168	.481	680.	.760
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation		.212	.176	.197	.161	.253	.169	.223	.279
	×	Mean		3.220	3.093	2.580	3.614	3.540	4.033	2.393	3.227
		200		11200 13900 12100	5120 12800 7110	1710 2710 1960	16000 37800 20900	20900 22600 21700	41600 52400 43800	1150 1640 1370	19500 19500 19500
(puo		100		6900 8670 7460	3690 8250 4740	1230 1740 1340	11500 24100 14000	14500 16200 15300	30500 36500 31600	844 1200 993	10600 11700 10800
et per sec	(years)	52		5540 6970 5970	3160 6720 3930	1050 1410 1130	9940 19500 11700	12100 13700 12800	26400 30900 27200	727 1040 850	8080 9240 8260
(cubic fee	e interval	52		4410 5520 4720	2690 5390 3230	886 1130 932	8480 15600 9690	9940 11400 10500	22600 25800 23100	617 885 716	6040 7200 6210
Peak-discharge (cubic feet per second)	Recurrence interval (years)	10		3180 3890 3350	2110 3840 2400	689 796 706	6740 11100 7350	7390 8630 7820	18000 19600 18200	479 687 545	3980 4970 4100
Peak-c		rv		2420 2880 2510	1710 2860 1860	551 589 555	5530 8310 5830	5640 6700 5930	14800 15400 14900	380 549 424	2790 3630 2870
		7		1550 1740 1570	1200 1730 1240	370 348 368	3960 5090 4030	3410 4200 3530	10500 10120 10500	245 366 263	1560 2170 1590
Station	number and	hydrologic region	b	01368500 3	01369000a 3	01369500 3	01370000a 3	01371000 4	01371500ac 3	01372040 3	01372200b 3

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	discharge record Gaged Historic			13	24 106	13			14
		Skew C	.589	.658	081	.730	524	-1.169	783	889.
10 units)	Station record	Standard deviation	.252	.283	.285	.246	.372	.228	.267	.274
stics (log	Sta	Mean	2.727	3.481	3.020	3.368	2.718	2.331	2.583	2.873
arge stati		Skew	.568	.625	.267	.748	.132	.274	.210	299.
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation	.252	.283	.285	.252	.372	.171	.226	.274
	W	Mean	2.727	3.481	3.020	3.376	2.718	2.359	2.606	2.873
		500	4230 2950 3980	32300 17300 29400	8540 6190 7320	21300 18100 20100	7060 4710 5840	807 1850 1370	2060 4800 3480	7660 5070
(puo		100	2600 2110 2520	18400 11400 17200	5460 4250 4880	12400 11900 12200	4170 2830 3520	616 1250 932	1460 2970 2180	4370 3170
et per sec	al (years)	50	2080	14200 9380 13400	4410 3560 4020	9710 9760 9730	3230 2220 2770	542 1040 778	1240 2370 1760	3380 2550
Peak-discharge (cubic feet per second)	e interval	25	1630 1520 1610	10700 7620 10300	3490 2930 3250	7480 7890 7600	2430 1710 2120	471 841 639	1040 1840 1390	2570 2000
lischarge	Recurrence interva	10	1150	7190 5570 7000	2460 2180 2350	5150 5700 5290	1590 1160 1430	382 608 472	794 1260 972	1730 1390
Peak-c		rv	850 923 856	5080 4250 5000	1800 1670 1760	3740 4300 3850	1070 824 992	316 456 362	621 905 710	1230 1010
		2	505 608 510	2830 2690 2820	1020 1060 1030	2210 2630 2260	513 461 503	225 272 234	396 508 417	697 587
Station	number and	hydrologic region	01372300b 3	01372500 3	01372800 3	01373500 3	01373690 3	01374130 3	01374250 3	01374440 3

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	e record	Historic	;	;	;	:	;	:	;	:
	Years c	discharge record	Caged	18	14	12	45	75	10	19	27
		į	Skew	298	575	727	.441	.468	.092	.293	.111
10 units)	Station record	Standard	deviation	.239	.282	.330	.243	.288	.247	.292	.336
stics (log	S	,	Mean	2.177	2.535	2.475	2.649	3.171	2.812	2.218	2.539
rge stati			Skew	.172	699.	.324	.505	.513	.427	.461	.321
Peak-discharge statistics (log 10 units)	WRC estimate	Standard	deviation	.239	.224	.274	.243	.288	.247	.292	.336
	M		Mean	2.177	2.564	2.506	2.649	3.171	2.812	2.218	2.539
			200	824 1260 1010	2470 3680 3070	2530 3550 3080	3140 3520 3230	15100 8590 14100	4490 6820 5850	1670 2680 2100	4350 1730 3460
(puc			100	580 855 690	1560 2320 1910	1610 2070 1840	2000 2340 2070	8830 5630 8390	2900 4090 3550	987 1610 1230	2510 1050 2060
t per sec	(years)		52	490 711 573	1260 1870 1530	1300 1610 1450	1620 1930 1680	6880 4610 6590	2370 3220 2820	772 1270 953	1930 828 1610
(cubic fee	e interval		25	407 578 468	1010 1470 1200	1030 1220 1120	1300 1560 1350	5270 3700 5090	1900 2480 2190	592 971 722	1460 639 1240
Peak-discharge (cubic feet per second)	Recurrence interval (years)		10	307 419 341	729 1030 837	733 808 763	934 1130 963	3560 2640 3470	1370 1670 1500	402 650 475	955 430 835
Peak-d			ro	238 315 257	552 750 611	538 565 547	700 845 717	2530 1960 2490	1030 1190 1090	285 459 326	654 305 590
			2	148 187 153	346 436 361	310 307 309	425 509 430	1400 1160 1390	622 658 630	157 250 169	332 167 315
Station	number and	hydrologic	region	01374460 3	01376280 ^a 3	01376690 3	01384500a 3	01387250b 3	01387300 3	01387350 3	01387410 3

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

Station		Peak-d	Peak-discharge (cubic feet per second)	cubic fee	t per seco	(pu			Peak-discharge statistics (log 10 units)	arge statie	stics (log	10 units)		Young of	7,000
number and			Recurrence interval		(years)			X	WRC estimate		Ŋ	Station record		lears of peak-	peak-
hydrologic region	2	ro	10	25	50	100	200	Mean	Standard deviation	Skew	Mean	deviation	Skew	Gaged F	Historic
,	!	• •	,	9		i C	9	i i	1	5	77.	270	140	ç	1
01387450 3	565 478 556	969 838 946	1310 1160 1280	1840 1690 1800	2310 2160 2270	2850 2710 2810	4440 4370 4420	79/.7	/97:	.340	/9/:7	/97:	.143	C)	:
01387500a 3	2870 2080 2840	5030 3560 4920	6970 4850 6770	10100 6900 9730	13100 8690 12500	16700 10700 15900	28100 16800 26300	3.483	.271	.556	3.483	.271	.519	9.2	;
01387880a 3	427 257 398	685 453 618	914 625 813	1280 899 1130	1630 1140 1420	2040 1410 1760	3330 2210 2790	2.659	.226	777.	2.659	.226	.942	15	:
01390500 ^a 3	966 672 941	1640 1140 1560	2240 1540 2100	3220 2180 2980	4140 2740 3790	5240 3380 4740	8740 5280 7710	3.012	.254	.640	3.008	.248	.437	33	64
01413500 4A	6100 5900 6070	9830 8890 9630	12700 11200 12300	16700 14300 15800	20100 16700 18600	23700 19300 21500	33200 25500 28700	3.789	.243	.107	3.789	.243	.002	51	:
01414000 4A	1460 1400 1440	2160 2180 2170	2700 2800 2750	3480 3650 3590	4140 4330 4260	4870 5020 4980	6880 6750 6780	3.180	.190	.479	3.180	.190	.534	21	:
01414500 4A	1450 1190 1410	2270 1900 2190	2890 2460 2770	3760 3260 3570	4470 3900 4220	5240 4570 4910	7250 6250 6670	3.166	.228	.140	3.166	.228	.041	51	;
01415000 4A	1360 1340 1360	2110 2090 2100	2650 2670 2660	3380 3490 3420	3950 4140 4030	4550 4810 4680	6070 6460 6300	3.134	.225	.001	3.134	.225	149	51	1

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from log-Pearson type III analyses; middle line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	discharge record Caged Historic		:	;	;	1	;	:	:	1
;	Years	dischar Gaged	ò	79	12	70	88	88	37	27	74
	-	Skew	Š	.836	146	.092	.097	.070	.518	062	040
10 units)	Station record	Standard deviation		.248	.300	.218	.242	.218	.242	.234	.230
tics (log	St	Mean		2.879	1.305	4.152	3.357	3.608	3.525	3.115	4.028
irge statis		Skew	!	639	.165	.237	.202	.183	.489	.053	.050
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation		.248	300	.218	.242	.218	.242	.234	.230
	X	Mean		2.879	1.305	4.152	3.357	3.608	3.525	3.115	4.028
		200		6130 3000 3830	170 175 174	69600 57600 60200	13000 12200 12500	19300 19000 19100	23300 20100 21200	6350 6170 6250	50500 48700 49600
(puo		100		3720 2210 2720	110 123 121	49800 44100 45700	9050 8820 8920	14000 13900 14000	14900 14400 14600	4650 4440 4550	37200 36000 36700
et per sec	(years)	50		2950 1890 2300	89 102 99	42400 38700 39900	7600 7490 7540	12000 12000 12000	12100 12200 12200	4000 3760 3900	32100 31100 31700
Peak-discharge (cubic feet per second)	e interval			2310 1590 1910	288	35600 33400 34300	6280 6240 6260	10100 10100 10100	9710 10200 9920	3380 3120 3290	27200 26400 27000
discharge (cubi	Recurrence interva	10		1620 1200 1430	50 59 56	27300 26600 26900	4700 4680 4690	7790 7680 7750	7010 7630 7230	2600 2330 2530	21100 20400 20900
Peak-c		rv		1190 926 1100	36 43 40	21500 21400 21500	3620 3580 3610	6160 5970 6110	5260 5840 5420	2050 1770 2000	16600 16100 16500
		7	=	713 583 682	20 25 22	13900 14600 14100	2230 2210 2230	3990 3790 3960	3200 3580 3270	1300 1080 1270	10600 10400 10600
Station	number and	hydrologic region		01415500 4A	01417185 4A	01417500 ^d 4A	01418000b 4A	01418500 4A	01419500 4A	01420000 4A	01420500 4A

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from log-Pearson type III analyses; middle line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Peak	discharge Recurren	Peak-discharge (cubic feet per second) Recurrence interval (years)	t per sec (years)	(puo		M	Peak-discharge statistics (log 10 units) WRC estimate Station reco	arge stati	stics (log	g 10 units) Station record		Years	Years of peak-
ت 1		10	25	52	100	500	Mean	Standard deviation	Skew	Mean	Standard deviation	Skew	discharg Gaged	discharge record Gaged Historic
35400 43200 38000 47000 36100 44500	432 470 445	43200 47000 44500	53500 59000 55900	61600 68300 64900	70000 77800 74300	90800 102000 97800	4.388	.192	.077	4.378	.183	233	42	51
5230 62 5990 72 5300 63	83 28	6230 7290 6370	7500 8910 7750	8460 10200 8810	9430 11400 9910	11800 14400 12500	3.576	.170	.023	3.576	.170	152	88	1
2760 3250 2840 3530 2770 3290	325	888	3870 4420 3970	4330 5110 4500	4790 5820 5040	5870 7500 6320	3.303	.163	020	3.296	.178	591	37	:
14300 17300 11800 14200 14100 16900	1730 1420 1690	000	21100 17200 20400	23900 19400 22900	26800 21700 25500	33400 26900 31600	3.988	.198	135	3.988	.198	432	37	:
482 595 611 774 507 643	595 77 643		745 988 826	862 1160 976	983 1340 1140	1280 1760 1510	2.511	.205	.029	2.511	.205	373	16	1
1580 1920 1540 1950 1570 1930	192(195(193(2360 2490 2390	2700 2920 2760	3030 3360 3130	3850 4420 4040	3.034	.196	059	3.034	.196	373	27	1
2820 3480 2840 3530 2820 3490	348 353 349	000	4340 4410 4360	4990 5100 5020	5660 5810 5700	7260 7480 7340	3.269	.214	960:-	3.269	.214	448	27	:
127 162 165 213 131 169	16 21 16	989	211 279 224	250 334 269	293 391 318	405 531 441	1.908	.232	.113	1.908	.232	003	3 £	;

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	discharge record		1	;	09	:	1	1	:	09
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Years	Gaged	and an	12	33	51	44	28	49	26	26
		Skew		1.197	.495	517	.532	.190	.094	.412	.329
10 units)	Station record	Standard deviation		.164	.173	.159	.182	.270	.247	.254	.222
tics (log	35	Mean		2.328	3.424	4.178	3.656	3.047	3.781	3.857	3.953
rge statis		Skew		.649	.450	.159	.500	.762	.192	.437	.400
Peak-discharge statistics (log 10 units)	WRC estimate	Standard		.164	.173	.161	.182	.239	.247	.254	.228
	≥	Mean	Targati Targati	2.328	3.424	4.191	3.656	3.063	3.781	3.857	3.962
		0	8	851 867 859	10400 8640 9880	48400 38100 46200	19500 17300 18100	9380 7540 8060	35500 48000 39700	52800 51700 52300	53400 44300 48900
(puo		100	3	610 663 636	7620 6770 7390	38400 31000 37000	13900 13000 13400	5590 5680 5650	24600 30400 26500	33700 34300 34000	36000 31900 34100
et per sec	(years)	5	3	524 578 548	6590 5970 6450	34300 27900 33300	11900 11300 11600	4420 4920 4710	20600 24300 21700	27300 28000 27600	29900 27200 28700
(cubic fee	Recurrence interval (years)	አ	3	445 495 465	5640 5190 5550	30300 24900 29600	10100 9670 9920	3440 4180 3830	17000 18900 17500	21700 22300 22000	24500 22700 23800
Peak-discharge (cubic feet per second)	Recurren	10	3	352 390 364	4490 4190 4440	25100 20900 24700	7880 7540 7770	2410 3230 2760	12700 12900 12800	15600 15900 15700	18200 17400 17900
Peak-c		Ľ		287 310 292	3670 3400 3640	21100 17600 20800	6350 5980 6260	1780 2540 2030	9690 9170 9600	11600 11700 11600	14000 13700 13900
		٠	7	204 205 204	2580 2310 2560	15400 12800 15300	4370 3950 4310	1080 1660 1210	5930 4890 5830	0989 0630 0698	8840 8700 8820
Station	number and	hydrologic	region	01425675 5	01426000 5	01426500 ^d 5	01427500 4A	01428000 4A	01435000b 4	01436500bd 4	01437000d 4

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	discharge record Gaged Historic	09	1	1	1	:	;	:	:
	Year	disché Gagec	26	2	18	22	48	14	10	88
	-	Skew	.265	.342	961	.018	170	.223	295	064
10 units)	Station record	Standard deviation	.209	.243	.168	.158	.143	.233	.228	.207
stics (log	S	Mean	3.998	3.202	2.483	3.146	3.638	2.938	2.028	3.602
arge stati		Skew	.379	.395	251	.092	027	.298	660:	.072
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation	.216	.243	.168	.158	.143	.233	.228	.207
	M	Mean	4.007	3.202	2.483	3.146	3.638	2.938	2.028	3.602
		200	53500 44000 48800	10500 12000 10800	823 905 859	4150 5150 4360	11100 11700 11200	4940 6400 5670	515 819 692	16500 17100 16700
(puo		100	37000 32700 35000	6880 7820 7030	696 723 706	3340 4250 3500	9310 9890 9430	3390 5030 4150	376 619 508	12500 13600 12800
et per sec	(years)	50	31100 28300 29900	5640 6400 5750	638 643 639	3010 3840 3140	8530 9080 8620	2840 4450 3510	322 536 429	10900 12100 11200
(cubic fe	Recurrence interval (years)	25	25800 24100 25100	4560 5160 4640	578 564 573	2680 3440 2780	7730 8290 7810	2340 3870 2900	272 455 353	9340 10600 9560
Peak-discharge (cubic feet per second)	Recurren	10	19500 19100 19300	3330 3710 3370	493 460 484	2240 2900 2310	6630 7160 6690	1750 3130 2160	210 356 265	7410 8660 7580
Peak-		5	15300 15400 15300	2520 2790 2540	423 379 415	1900 2460 1940	5740 6210 5780	1350 2550 1620	166 283 199	5970 7080 6080
		2	9840 10200 9900	1540 1710 1550	309 268 304	1390 1830 1410	4350 4700 4360	845 1760 959	106 188 119	3980 4850 4020
Station	number and	hydrologic region	01437500bd 4	01440000a 3	01496370 5	01496500 5	01497500 5	01497800 5	01497805 5	01498500 5

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	f peak-	ge record Historic	1	98	;	:	:	1	1	:
	Years of peak-	discharge record Gaged Historic	35	<u>8</u>	49	12	11	%	<u>S</u>	3 2
		Skew	162	231	242	552	.691	.671	319	271
10 units)	Station record	Standard deviation	.175	.142	.149	.162	.176	.304	.192	.150
stics (log	St	Mean	3.415	4.116	3.560	2.438	2.131	1.550	3.322	3.953
rge statie		Skew	600.	.288	075	047	.445	.523	.221	114
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation	.175	.142	.149	.162	.176	.304	.176	.150
	3	Mean	3.415	4.129	3.560	2.438	2.131	1.550	3.329	3.953
		200	8330 8880 8490	38800 37500 38500	9450 12000 10000	786 980 890	539 310 411	417 256 372	7650 5740 7230	23100 25200 23500
(puo	ŀ	100	6660 7120 6780	30900 31600 31000	7920 9810 8290	645 744 694	394 239 313	236 188 224	5850 4560 5600	19400 20800 19700
et per sec	(years)	58	5960 6360 6050	27700 28900 27900	7250 8850 7520	585 646 612	340 209 277	181 161 176	5150 4050 4970	17800 18900 18000
(cubic fe	Recurrence interval (years)	25	5270 5620 5330	24600 26300 24800	6560 7900 6750	524 550 534	291 179 244	136 134 135	4470 3550 4340	16200 17000 16300
Peak-discharge (cubic feet per second)	Recurrent	10	4360 4630 4400	20700 22600 20900	5620 6640 5730	442 432 438	230 142 199	90 102 91	3620 2910 3540	13900 14500 14000
Peak-c		ro	3650 3850 3670	17600 19500 17700	4850 5620 4910	376 342 367	188 114 168	62 79 63	2990 2400 2950	12000 12400 12000
		7	2600 2750 2610	13200 14500 13200	3640 4100 3660	275 225 267	131 78 122	33 33	2100 1700 2080	9030 9210 9040
Station	number and	hydrologic region	01499000 5	01500500 5	01501000 5	01501015 5	01501140 5	01501500 5	01502000 5	01502500 5

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

Station		Peak	Peak-discharge (cubic feet per second)	(cubic fee	et per sec	(puo		M	Peak-discharge statistics (log 10 units)	arge stati	stics (log	g 10 units) Station record		Years of peak-	peak-
number and hydrologic			Necurren	Necurrence interval	₹				Standard			Standard	1	- 00	record
region	2	ro	10	25	22	100	200	Mean	deviation	Skew	Mean	deviation	Skew	Caged F	Historic
01502701 ^b 5	28400 26200 28300	36200 35600 36200	41000 41600 41000	46800 48600 47000	51000 53400 51300	55000 58400 55500	64200 69600 65000	4.453	.124	023	4.453	.124	114	75	1
01502714 5	259 158 244	361 238 330	429 300 386	516 381 462	581 447 520	647 515 581	804 677 735	2.413	.171	002	2.413	.171	474	12	;
01503000a 5	31300 32600 31300	40900 43500 41000	47100 50500 47400	54700 58700 55100	60300 64500 60800	65800 70400 66400	78500 83600 79300	4.496	.138	600.	4.496	.138	072	55	:
01503960 5	278 254 274	346 363 350	389 446 409	442 555 489	480 641 557	518 730 628	604 938 791	2.447	.111	.108	2.447	.111	690'-	11	1
01503980 5	822 606 804	1250 855 1190	1570 1030 1460	2030 1260 1830	2410 1430 2110	2830 1600 2410	3950 2000 3210	2.925	.207	.301	2.925	.207	.360	23	;
01505000 5	4600 5710 4640	6520 8200 6640	7830 9880 8050	9490 11900 9820	10800 13300 11200	12000 14800 12500	15100 18200 15800	3.662	.181	025	3.656	.176	206	8	81
01505017b 5	180 254 190	240 370 272	279 460 339	327 581 428	362 679 506	397 780 588	478 1020 770	2.256	.149	020	2.256	.149	518	12	;
01505500 5	2660 2370 2640	4120 3670 4070	5150 4620 5070	6510 5800 6370	7560 6730 7360	8640 7670 8380	11300 9920 10900	3.421	.229	104	3.421	.229	339	32	;

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Peak-	Peak-discharge (cubic feet per second)	(cubic fee	et per sec	(puo			Peak-discharge statistics (log 10 units)	arge statis	stics (log	5 10 units)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1
		Recurrence interval		(years)			X	WRC estimate		S	Station record		Years of peak-	t peak-
rc		10	25	22	100	200	Mean	Standard deviation	Skew	Mean	Standard deviation	Skew	discharge record Gaged Historic	record Historic
121 128 122	12100 12800 12200	14200 14900 14300	16900 17500 17000	18900 19400 19000	21100 21300 21100	26300 25500 26100	3.967	.141	.266	3.963	.150	086	51	1
<i>ल ल ल</i>	3640 3620 3640	4320 4450 4340	5210 5490 5260	5890 6280 5980	6590 7070 6720	8270 8930 8460	3.422	.166	060.	3.412	.188	645	34	1
	274 285 275	345 366 348	439 474 445	512 562 523	586 654 603	767 878 798	2.235	.239	135	2.235	.239	325	3%	1
	685 502 667	930 631 889	1300 803 1210	1630 942 1490	1990 1090 1770	3050 1430 2610	2.603	.281	.214	2.603	.281	.213	88	:
	1860 1850 1860	2260 2180 2240	2760 2580 2700	3140 2870 3040	3510 3180 3370	4400 3870 4160	3.101	.199	125	3.101	.199	494	17	:
	132 382 185	218 495 304	389 640 486	579 755 658	842 873 856	1880 1160 1540	1.786	.416	.573	1.786	.416	1.616	11	:
	8820 7460 8720	10600 8800 10400	12800 10400 12500	14400 11600 13900	16000 12800 15400	19700 15500 18800	3.780	.195	201	3.780	.195	385	49	;
	5840 5350 5800	6780 6430 6740	7960 7790 7940	8830 8830 8830	9700 9880 9730	11700 12300 11800	3.643	.147	.020	3.643	.147	062	52	:

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from log-Pearson type III analyses; middle line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

Station		Peak-c	Peak-discharge (cubic feet per second)	(cubic fee	of per sec	(puo			Peak-discharge statistics (log 10 units)	arge statis	stics (log	10 units)			
number and			Recurrenc	Recurrence interval (years)	(years)			M	WRC estimate		S	Station record		Years of peak-	f peak-
hydrologic region	2	5	10	25	50	100	500	Mean	Standard deviation	Skew	Mean	Standard deviation	Skew	discharge record Gaged Historic	e record Historic
01510500 ^b 5	5830 4930 5800	8090 8090 8000	9640 8170 9490	11700 9830 11500	13200 11100 12900	14800 12300 14300	18600 15200 17900	3.768	.167	.105	3.768	.167	.052	52	;
01510610 5	448 248 417	610 370 546	720 463 629	864 585 746	974 685 836	1090 788 932	1360 1040 1180	2.656	.155	.171	2.656	.155	.051	11	:
01511500 ^d 5	14000 13300 13900	19600 18200 19300	23900 21500 23100	30400 25400 28400	35900 28300 32400	42100 31100 36600	59500 37700 47800	4.167	.159	277.	4.212	.231	1.503	12	98
01512500 5	22100 24300 22200	29800 33300 30000	35600 39100 35900	43700 45900 43900	50300 50700 50300	57500 55600 57200	76500 66600 74900	4.359	.145	809.	4.362	.152	.920	75	123
01513500a 5	51900 56500 52100	67200 76200 67900	77400 88700 78600	90600 103000 92300	101000 113000 103000	1111000 123000 113000	136000 146000 138000	4.721	.129	.265	4.721	.129	.232	51	;
01513712 6	219 159 210	437 275 404	659 361 275	1060 473 361	1470 561 1080	2000 651 1420	3890 870 2520	2.375	.334	.626	2.375	.334	1.539	12	;
01513790 6	5680 3240 5330	8770 5000 8020	10900 6250 9530	13700 7840 11500	15900 9080 13000	18100 10400 14800	23300 13500 18800	3.749	.229	142	3.769	.246	436	12	32
01514000 6	5980 6160 5990	8850 8940 8850	11000 10900 11000	14100 13400 14000	16700 15400 16500	19500 17500 19200	27100 22600 26400	3.789	.193	.377	3.792	.198	.478	82	98

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from log-Pearson type III analyses; middle line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

f peak-	e record Historic		123	1	1	:	68	:	;
Years of peak-	discharge record		51	33	17	24	40	21	27
	Skew		.118	899.	306	1.187	.592	1.336	.630
g 10 units) Station record	Standard deviation		.137	.294	.195	.265	.289	.248	.256
stics (log Sta	Mean o		4.816	2.868	2.501	2.805	4.030	3.602	4.044
arge statis	Skew	-	.167	.502	022	.667	.436	.657	.452
Peak-discharge statistics (log 10 units) WRC estimate Station reco	Standard deviation		.138	.294	.195	.265	.274	.248	.256
M	Mean		4.818	2.868	2.501	2.805	4.019	3.602	4.044
	200		175000 190000 178000	7830 3290 6770	1140 1510 1280	6040 3700 5350	89700 43300 80400	32700 16900 27600	83400 36800 70800
(puo	100		143000 158000 146000	4550 2500 4110	895 1120 974	3520 2770 3320	55200 33000 51100	19700 13100 17700	52800 28300 46700
et per sec	50		130000 144000 132000	3530 2170 3240	793 966 853	2740 2390 2640	44000 28700 41200	15600 11400 14400	42600 24800 38100
lischarge (cubic feet per a	25		117000 131000 119000	2690 1850 2540	694 811 728	2100 2020 2080	34400 24600 32900	12200 9880 11600	33800 21400 31300
Peak-discharge (cubic feet per second) Recurrence interval (years)	10		99400 112000 101000	1810 1450 1760	563 615 574	1440 1550 1460	24000 19400 23500	8560 7870 8430	24100 17100 23000
Peak	rv		85700 95800 86400	1280 1130 1270	463 464 463	1040 1190 1060	17400 15300 17300	6300 6300 6300	17900 13800 17500
	2		65200 71100 65400	698 969 697	318 263 312	597 699 604	9970 9660 9960	3760 4070 3790	10600 9090 10500
Station	hydrologic region	0	01515000ac 6	01516500 ^a 6	01516800a 6	01517000 ^a 6	01518000 ^a 6	01518500a 6	01520000a 6

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from log-Pearson type III analyses; middle line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

Station		Peak	Peak-discharge (cubic feet per second) Recurrence interval (years)	lischarge (cubic fee	et per sec	(puo		3	Peak-discharge statistics (log 10 units) WRC estimate Station reco	arge stati	stics (log	g 10 units) Station record		Years o	Years of peak-
hydrologic region	2	ro	10	25	02	100	200	Mean	Standard deviation	Skew	Mean	Standard deviation	Skew	discharge record Gaged Historic	discharge record Gaged Historic
).															
01520500ad 6	20900 22400 21000	34800 34200 34800	46300 42600 46000	63800 53400 62500	79300 61900 76600	96900 70900 92900	148000 92800 139000	4.335	.252	.361	4.343	.264	.520	49	66
01521596 6	146 409 186	285 701 374	406 916 565	593 1190 826	759 1410 1050	948 1630 1260	1490 2160 1810	2.167	.343	.047	2.167	.343	030	11	1
01522500 6	2660 1520 2600	4480 2520 4320	5830 3250 5500	7670 4190 7080	9130 4940 8250	10700 5700 9650	14500 7570 12900	3.418	.275	151	3.413	.274	307	\$	23
01523500 6	5120 2630 4700	7320 4320 6630	9020 5550 7860	11500 7130 9700	13500 8370 11100	15800 9650 12900	22000 12700 17400	3.725	.174	.555	3.712	.156	.138	10	46
01526000 6	5800 4130 5710	0096	12700 8370 12100	16500 10600 15500	19300 12400 17900	22200 14200 20500	28900 18600 26600	3.747	.289	342	3.737	.284	681	8,	53
01526500ad 6	31400 32500 31400	48800 48800 48800	62400 60300 62200	82300 75000 81500	99100 86600 97500	118000 98900 116000	169000 128000 163000	4.508	.219	.336	4.514	.228	.517	99	66
01527000 7	406 619 416	610 865 629	774 1040 800	1020 1270 1050	1230 1450 1260	1460 1630 1490	2130 2080 2120	2.626	.198	.550	2.632	.209	.985	37	53
01528000 6	1470 1870 1480	2150 2760 2180	2650 3370 2710	3360 4160 3460	3930 4770 4060	4550 5400 4680	6180 6840 6290	3.177	.189	.312	3.177	.189	.398	51	53

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	Skew Gaged Historic	8	.431 69	342 10	2779 50	.155 75 99	021 17	138 25	19	1.338 70
g 10 units)	Station record	Standard deviation Sk		. 244	.331	158	.204	261	301	.375	.251 1.
stics (log	S	Mean		3.867	2.372	3.332	4.673	2.922	2.669	2.678	3.894
arge stati		Skew		.352	.008	268	.117	.124	.060	.475	.772
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation		.244	.331	.146	.201	.261	.301	.375	.251
	M	Mean		3.867	2.372	3.337	4.671	2.922	2.669	2.678	3.894
		200		47000 31700 45100	2130 2320 2220	5140 12600 6380	189000 124000 181000	5160 2440 4150	3600 3140 3470	9450 3090 7260	71100
(puo		100		31300 25100 30600	1390 1730 1550	4450 9700 5250	143000 98800 138000	3570 1860 2980	2410 2390 2410	4780 2310 3990	41200
et per sec	(years)	55		25800 22200 25400	1130 1490 1300	4130 8460 4790	125000 87600 121000	2990 1610 2510	1980 2080 2010	3470 1990 3000	32100
(cubic fe	ce interval	25		20900 19500 20800	896 1250 1040	3790 7250 4220	107000 77100 104000	2450 1380 2140	1590 1770 1630	2470 1690 2260	24700
discharge	Recurren	10	2	15400 15900 15400	626 947 733	3310 5710 3530	85200 63500 83800	1820 1080 1650	1140 1380 1180	1490 1310 1450	16900
Peak≺	Peak-discharge (cubic feet per second) Recurrence interval (years)	ιΩ)	11600 13100 11700	447 712 508	2900 4490 2990	69000 52900 68400	1380 848 1300	833 1080 859	960 1010 967	12300
		2		7120 8960 7170	235 400 262	2210 2790 2230	46400 37400 46200	824 525 792	463 654 477	445 612 460	7280
Station	number and	hydrologic region	500	01529500 6	01530301 6	01530500 6	01531000a 6	01531250 ^a 6	01533250a 6	03008000	03010500a

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

Years of neak-	discharge record	Historic	1	37	123	:	:	1	:	:
Years	dischare	Gaged	29	æ	\$	20	49	14	18	26
		Skew	172	1.386	.388	.610	.233	.400	.831	154
10 units)	Standard	deviation	.300	.212	.150	.276	.161	.127	.168	.239
stics (log	ה 	Mean	3.546	3.718	4.377	3.131	3.583	3.044	2.931	2.167
ırge stati		Skew	107	.603	.257	.329	.150	.134	.338	156
Peak-discharge statistics (log 10 units)	WKC estimate Standard	deviation	.300	.203	.147	.276	.161	.127	.168	.239
[]	A	Mean	3.546	3.713	4.375	3.131	3.583	3.044	2.931	2.167
		200	23600 13500 21000	28000 17300 25300	69700 93000 72200	10900 8470 10100	11900 15500 12500	2690 2200 2490	3040 3080 3050	645 672 652
(puo		100	16700 10800 15300	18800 13400 17600	55400 73400 57100	6900 6510 6780	9460 12500 9930	2250 1690 2030	2310 2350 2320	496 520 502
et per sec	(years)	58	14000 9580 13000	15600 11800 14700	49700 65200 51200	5560 5680 5600	8450 11200 8870	2060 1480 1830	2020 2050 2030	434 454 439
(cubic fe	Kecurrence interval (years)	25	11500 8460 10900	12800 10300 12300	44100 57500 45100	4410 4900 4540	7470 9950 7780	1870 1270 1670	1750 1760 1750	374 389 377
Peak-discharge (cubic feet per second)	Kecurren	10	8470 7050 8260	9620 8310 9430	36900 48000 37500	3110 3900 3270	6200 8400 6400	1620 1010 1460	1420 1390 1410	294 306 295
Peak-		5	6320 5970 6290	7510 6810 7450	31400 40700 31700	2280 3120 2390	5220 7220 5340	1410 813 1300	1170 1100 1160	234 240 234
		2	3560 4360 3610	4930 4640 4910	23400 29900 23600	1310 2020 1370	3800 5450 3860	1100 529 1030	835 695 821	149 148 148
Station	number and	nyarologic region	03010800 6	03011000	03011020a 6	03011800	03013000	03013800 6	03015390a 6	04213040a 6

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from log-Pearson type III analyses; middle line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Peak-c	lischarge	Peak-discharge (cubic feet per second)	t per secc	(puo			Peak-discharge statistics (log 10 units)	arge statis	tics (log	10 units)			
		Recurrenc	Recurrence interval (years)	(years)			WF	WRC estimate		S	Station record		Years of peak-	peak-
rc		10	25	50	100	200	Mean	Standard deviation	Skew	Mean	Standard deviation	Skew	discharge record Gaged Historic	ge record Historic
,					5	0.020	000	90	6.00	000	90	110	<u>~</u>	;
11 9 11	1140 989 1120	1380 1260 1350	1700 1610 1670	1940 1890 1920	2190 2170 2180	2/80 2880 2820	7.889	861.	062	609.7	.190	110:	0	!
22 23	2560 2100 2510	3060 2630 2990	3700 3310 3620	4170 3860 4090	4630 4430 4580	5730 5800 5750	3.254	.183	102	3.254	.183	146	25	:
21000 18200 20800	888	25100 22300 24800	30400 27700 30100	34500 31900 34100	38600 36400 38200	48800 46900 48500	4.179	.171	.081	4.179	.171	.127	48	1
_,,	530 636 541	653 796 677	811 1000 853	932 1160 994	1050 1330 1130	1350 1710 1460	2.543	.215	122	2.543	.215	145	24	1
8000	3960 2650 3730	4620 3310 4270	5470 4160 5030	6120 4830 5620	6780 5540 6290	8410 7220 7920	3.482	.140	.230	3.482	.140	.632	14	1
- -	979 1060 994	1230 1330 1260	1600 1680 1630	1910 1950 1930	2260 2230 2250	3230 2880 3070	2.834	.194	.494	2.802	.151	014	12	35
K 69 W	7060 3840 6870	8260 4780 7940	9710 5980 9240	10700 6910 10100	11700 7880 11100	14000 10100 13300	3.707	.167	208	3.702	.163	390	49	84
— — — — — — — — — — — — — — — — — — —	1200 1230 1200	1400 1550 1430	1660 1950 1730	1850 2270 1970	2040 2610 2200	2480 3420 2760	2.944	.159	030	2.944	.159	023	23	1

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	discharge record Gaged Historic	84		:	84	;	:	;	1	1
	Years	dischar Gaged	49	,	41	47	47	25	26	29	11
		Skew	268	į	.42/	333	.114	.342	.465	356	055
10 units)	Station record	Standard deviation	.134		.255	.155	.147	.158	.155	.230	.162
stics (log	Sı	Mean	3.805		2.883	3.727	3.854	2.919	3.435	2.989	1.937
ırge stati		Skew	043		.149	.007	.063	.178	.246	278	116
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation	.139	ļ	.255	.164	.147	.158	.155	.230	.162
	M	Mean	3.810	•	2.883	3.733	3.854	2.919	3.435	2.989	1.937
		200	16000	15900	4600 4770 4670	16100 14500 15800	19400 20900 19700	2550 5110 3280	8460 10300 8970	3750 3520 3720	240 355 295
(puo	-	100	13500	13300	3190 3670 3380	13100 11200 12800	15900 16000 15900	2030 3920 2530	6660 8010 7010	2990 2740 2960	199 272 232
t per sec	(years)	50	12400	12100	2670 3200 2880	11800 9750 11500	14400 14000 14300	1810 3410 2230	5930 7020 6210	2670 2410 2640	182 237 207
(cubic fee	e interval	25	11300	11100	2200 2750 2380	10500 8410 10200	13000 12100 12900	1600 2910 1890	5240 6070 5420	2340 2080 2320	164 202 179
Peak-discharge (cubic feet per second)	Recurrence interval (years)	10	9730	9530	1630 2180 1770	8780 6690 8580	11000 9640 10900	1330 2260 1480	4340 4840 4420	1890 1650 1870	139 158 145
Peak-c		5	8470	8340	1240 1730 1330	7430 5340 7300	9470 7750 9370	1120 1740 1190	3660 3880 3680	1530 1320 1520	119 124 120
		2	6470	6380	752 1090 794	5400 3440 5320	7110 5070 7030	822 1040 838	2680 2510 2670	999 845 994	87 76 85
Station	number and	hydrologic region	04214500	٥	04214980 6	04215000 6	04215500 6	04216400 6	04216418 ^b 6	04216500 6	04216875 6

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	discharge record Gaged Historic	84	84	:	45	59	;	:	34
	Years	dischar Gaged	43	43	25	32	31	15	10	23
		Skew	746	524	-1.327	678	249	237	102	.025
10 units)	Station record	Standard deviation	.156	.157	.232	.100	.187	.291	.129	.198
stics (log	S	Mean	3.583	3.610	2.973	3.611	3.270	2.127	2.358	3.191
arge stati		Skew	415	272	330	035	.581	195	122	.147
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation	.161	.162	.189	.093	.175	.291	.129	.215
	M	Mean	3.588	3.615	2.992	3.620	3.291	2.127	2.358	3.207
		200	9330 13500 10100	10700 15400 11500	2880 4180 3250	7650 16900 9650	8280 5710 7650	788 750 772	514 759 636	7340 4820 6580
(puo		100	8160 10700 8600	9120 12200 9630	2420 3340 2660	6820 13500 8180	5890 4600 5600	578 591 583	444 582 509	5390 3940 4980
et per sec	(years)	50	7600 9480 7930	8400 10800 8780	2210 2950 2410	6440 12000 7530	5030 4100 4820	494 522 504	412 506 456	4640 3510 4320
(cubic fee	Recurrence interval (years)	25	6990 8280 7170	7 64 0 945 0 7880	1990 2570 2120	6050 10600 6790	4260 3610 4140	414 452 426	379 430 400	3930 3100 3740
Peak-discharge (cubic feet per second)	Recurrence	10	6090 6710 6150	6570 7630 6670	1680 2070 1740	5480 8660 5880	3330 2980 3280	312 361 324	333 331 332	3060 2540 2970
Peak-c		rc	5310 5470 5320	5670 6210 5700	1420 1670 1450	5000 7160 5190	2700 2480 2680	237 290 245	293 254 284	2440 2100 2400
		2	3970 3660 3960	4190 4160 4190	1010 1090 1020	4180 4970 4230	1880 1740 1870	137 187 142	229 148 215	1590 1440 1580
Station	number and	hydrologic region	04217000 6	04217500bc 7	04217700 6	04218000bc 7	04218518 ^b 6	04219645 6	04219738 6	04219900 6

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak- discharge record	Gaged Historic	- 11	15	71 86	10		98 62	23	13
	 - 	Skew Ga	-1.178	789	.508	.024	070	.517	.412	883
) units)	Station record Standard	_	.165 -1.	.170	.225	.238	.193	.177	.230	.220
Peak-discharge statistics (log 10 units)	Stati	Mean de	2.129	2.957	3.881	2.790	2.912	4.346	2.723	3.203
arge statis		Skew	396	396	.379	.031	050	.387	.248	388
Peak-disch	WRC estimate Standard	deviation	.136	.170	.222	.238	.193	.175	.230	.220
	WR	Mean	2.146	2.957	3.879	2.790	2.912	4.345	2.723	3.203
		200	297 291 294	2310 2320 2310	41600 34300 40700	3050 2450 2750	2860 2330 2710	85700 65400 83400	2840 3500 3040	5410 13900 9120
(puo		100	264 244 256	2000 1920 1970	28500 26600 28300	2240 1890 2070	2260 1860 2150	63500 51500 62300	1990 2620 2170	4470 10700 7020
et per sec	l (years)	<u>15</u>	249 225 240	1850 1750 1820	23900 23300 23800	1920 1640 1790	2010 1650 1910	55100 45600 54100	1680 2270 1850	4050 9350 6220
(cubic fe	e interval	25	231 203 222	1700 1580 1670	19700 20200 19700	1620 1400 1530	1770 1440 1700	47300 40000 46700	1390 1920 1510	3600 8030 5150
Peak-discharge (cubic feet per second)	Recurrence interva	10	206 171 196	1460 1350 1440	14800 16200 14900	1250 1090 1200	1440 1180 1400	37700 32800 37400	1050 1480 1130	2980 6350 3920
Peak		rv	183 146 175	1260 1160 1240	11500 13000 11600	977 849 947	1190 967 1170	30800 27300 30700	819 1130 855	2460 5030 2940
		2	143 107 137	929 898 925	7330 8580 7360	614 513 597	819 660 807	21600 19200 21500	517 670 529	1650 3180 1850
Station	number and hydrologic	region	04219922 7	04220150 7	04221500ab 6	04221769 6	04222600 6	04223000a 6	04224700 6	04224775 6

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

Voors of noak.	discharge record	Gaged Historic		:	;	;	:	;	:	28	;
Voare	dischare	Gaged	Ç	2	23	61	19	45	41	24	42
		Skew	Ç	.630	.410	183	.444	.432	.425	.478	080
10 units)	Standard	deviation		.362	.435	.216	.229	.168	.230	.181	.211
stics (log	n l	Mean	100	2.23/	2.435	3.583	3.463	4.328	3.244	3.142	3.414
rge stati		Skew	I.	.775	.248	127	.228	.308	.293	.246	065
Peak-discharge statistics (log 10 units)	Standard	deviation		.362	.435	.216	.229	.168	.230	.178	.211
747	*	Mean	t c	2.237	2.435	3.583	3.463	4.328	3.244	3.139	3.414
		200		2510 1450 1980	6570 1510 4990	14900 20900 15700	15400 11600 14100	74800 96900 78800	9720 5180 9060	5050 3110 4610	10100 12100 10400
Peak-discharge (cubic feet per second) Recurrence interval (years) Securrence of the per second of t	100		1420 1080 1260	3350 1150 2710	11600 16100 12200	10800 8910 10200	57000 78500 60100	6720 4150 6350	3840 2420 3520	7840 9530 8080	
Peak-discharge (cubic feet per second) Recurrence interval (years)	20		1080 932 1010	2420 988 2000	10300 14100 10800	9170 7770 8720	50100 66900 52800	5640 3750 5400	3360 2160 3120	6910 8560 7120	
Peak-discharge (cubic feet per second) Recurrence interval (years)	e interval	25		801 781 793	1710 832 1500	8960 12100 9280	7630 6650 7370	43500 58200 45500	4660 3340 4520	2920 1880 2740	6000 7540 6160
	Kecurrenc	10		513 590 538	1010 630 939	7200 9540 7380	5790 5220 5670	35300 47300 36500	3500 2790 3440	2350 1520 2230	4810 6170 4930
		5		343 441 365	623 472 604	5840 7550 5920	4500 4100 4450	29300 38800 29900	2710 2370 2690	1930 1250 1850	3910 5090 3990
		2	;	166 246 179	261 262 261	3870 4750 3900	2850 2540 2820	20900 26400 21100	1710 1770 1710	1360 868 1320	2610 3520 2650
Station	hydrologic	region		04224807 6	04224900 6	04225000 6	04226000 6	04227500acd 7	04229500 7	04230380 7	04230500 7

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	불니	discharg Recurrer	c fee	(years)	(puo		M	Peak-discharge statistics (log 10 units) WRC estimate Station reco	irge stati	stics (log	Station record	1 1 1	Years of peak- discharge record	f peak- e record
2 5 10 25 50	25		20	i i	100	200	Mean	deviation	Skew	Mean	deviation	Skew	Gaged Historic	Historic
1580 2340 2890 3640 4220 1340 1840 2180 2590 2900 1570 2310 2830 3530 4050	2890 3640 2180 2590 2830 3530		4220 2900 4050		4840 3190 4600	6390 3910 6040	3.201	.202	.100	3.201	.202	.167	42	:
64 75 81 88 93 41 54 62 72 79 60 70 76 83 88	81 88 62 72 76 83		8 2 8		98 92 93	107 97 103	1.808	620.	064	1.791	.114	-1.330	11	:
21900 27100 30900 36000 40200 28900 40900 49100 59900 68300 22300 28300 33100 39800 45600	30900 36000 49100 59900 33100 39800		40200 68300 45600		44600 76900 51100	56000 97800 64900	4.354	.101	.835	4.345	.088	.559	32	188
111 155 182 215 237 98 140 167 199 219 109 152 178 210 231	182 215 167 199 178 210		237 219 231		259 236 251	306 274 294	2.033	.183	339	2.033	.183	807	13	:
98 129 151 180 202 123 165 193 227 250 100 134 159 191 215	151 180 193 227 159 191		202 250 215		225 271 239	284 318 294	1,999	.136	.377	1.999	.136	.874	16	:
35 48 56 65 71 44 61 72 86 95 36 50 59 70 78	56 65 72 86 59 70		71 95 78		74 103 88	90 120 100	1.541	.164	290	1.541	.164	748	13	;
91 137 172 222 263 100 140 167 200 223 92 137 170 215 249	172 222 167 200 170 215		263 223 249		308 244 283	428 291 375	1.971	.202	.313	1.948	.183	.475	11	19
891 1150 1330 1540 1710 771 1080 1290 1550 1750 883 1140 1330 1540 1720	1330 1540 1290 1550 1330 1540		1710 1750 1720		1870 1930 1880	2260 2380 2280	2.953	.131	.151	2.953	.131	.212	8	;

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	œ	Historic	1	1	;	;	:	83	83	83
	Years	dischar	Caged	22	23	51	51	15	62	62	62
	75	ć	Skew	525	-1.090	.021	026	.100	.738	.862	.617
10 units)	Station record	Standard	deviation	.228	.258	.260	.236	.338	.222	.237	.203
stics (log	St		Mean	2.357	2.619	3.078	3.507	3.320	2.973	3.051	3.509
irge statie			Skew	233	337	.071	.041	.168	.504	.593	.453
Peak-discharge statistics (log 10 units)	WRC estimate	Standard	deviation	.228	.225	.260	.236	.338	.212	.226	.198
	M		Mean	2.357	2.636	3.078	3.507	3.320	2.967	3.045	3.506
			200	887 1240 973	1560 1070 1450	7070 7300 7110	15800 16300 15900	23000 9980 17800	5110 5290 5140	7220 7950 7320	15300 12300 14900
(puo		0	100	703 1010 776	1270 888 1180	4970 5590 5060	11600 12400 11700	14000 7560 11600	3450 4010 3520	4640 6080 4820	10700 9690 10600
et per sec	(years)	i	8	624 912 685	1140 812 1070	4190 4850 4290	9950 10800 10100	11100 6560 9400	2870 3490 2950	3780 5310 3970	9090 8560 9020
(cubic fee	Recurrence interval (years)	;	25	545 812 594	1010 727 959	3460 4140 3540	8400 9200 8500	8520 5590 7590	2360 2990 2420	3040 4570 3190	7600 7470 7590
Peak-discharge (cubic feet per second)	Recurrence	,	10	439 676 475	822 609 790	2590 3210 2650	6470 7150 6530	5740 4360 5400	1770 2360 1810	2210 3630 2320	5850 6070 5870
Peak-c		ı	rv	355 568 380	673 511 654	1980 2480 2010	5080 5540 5110	3990 3400 3890	1370 1880 1390	1680 2900 1740	4640 4980 4660
		,	2	232 412 247	445 367 438	1190 1480 1200	3200 3340 3210	2040 2080 2050	889 1200 898	1050 1880 1080	3100 3380 3110
Station	number and	hydrologic	region	04232460 7	04232630 7	04233000 6	04233255 ^b 6	04233310 6	04233676b 6	04233700b 6	04234000 6

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

Years of peak-	discharge record Gaged Historic	1	;	;	1	:	;	:	:
Years	dischar Gaged	10	11	11	22	11	28	10	70
	Skew	809	087	.043	792	333	333	.085	092
Station record	Standard deviation	.216	.211	.173	.168	.101	.205	.137	.203
stics (log	Mean	1.926	1.601	2.401	2.992	1.323	3.099	1.772	2.505
rge statis	Skew	172	.029	.298	395	109	.165	.062	014
Peak-discharge statistics (log 10 units) WRC estimate Station reco	Standard deviation	.216	.211	.173	.168	.101	.184	.137	.203
M	Mean	1.926	1.601	2.401	2.992	1.323	3.110	1.772	2.505
	200	318 269 298	165 185 172	918 748 852	2480 3960 2840	40 43 43	4740 4710 4730	150 187 165	1220 1040 1170
(puo	100	252 220 238	125 153 135	694 612 662	2150 3190 2400	% 4 8 8 8	3630 3770 3660	125 159 139	945 871 925
t per seco	50	224 199 214	109 139 119	608 556 589	1990 2880 2180	£ & &	3190 3400 3230	114 147 126	833 798 825
cubic fee	25	195 176 188	94 124 103	527 495 517	1820 2550 1960	33 33	2770 3010 2810	103 133 113	723 718 722
Peak-discharge (cubic feet per second) Regumente interval (vears)	10	158 143 153	75 101 82	425 410 421	1580 2110 1660	28 30 28	2230 2480 2260	89 113 96	582 604 585
Peak-d	r.	129 115 125	60 83 65	350 340 348	1360 1760 1410	26 26 26	1830 2070 1850	77 96 81	474 510 478
	2	86 75 84	40 56 42	247 240 246	1010 1260 1030	21 19 20	1270 1480 1280	59 71 61	320 371 324
Station	hydrologic region	042340202	042340588 7	04234138 7	04234200 7	04234363 7	04235250 7	04235255 7	04235276 7

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	discharge record	Historic	;	1	:	:	;	1	:	:
	Years (discharg	Caged	11	29	10	88	48	29	21	25
		Show	JARW	-1.585	.566	.506	372	195	.166	.267	.446
10 units)	Station record	Standard	ueviation	.218	.152	.196	.230	.231	.187	.137	.189
stics (log	S	Moan	Mean	3.531	3.843	1.910	3.535	3.425	3.007	2.865	2.750
arge stati		Chow	okew Okew	159	.443	.293	.280	083	.175	.195	.280
Peak-discharge statistics (log 10 units)	WRC estimate	Standard	deviation	.150	.152	.196	.205	.231	.187	.137	.189
	M	Moan	Mean	3.563	3.843	1.910	3.547	3.425	3.007	2.865	2.750
		Ü	36	9260 12700 10900	22900 16900 21700	349 262 295	16100 13100 15600	11600 10500 11500	3860 4130 3910	1950 2600 2230	2280 2390 2320
(puo		100	01	7850 9920 8780	17500 13600 16800	255 205 226	11600 9940 11300	8870 7930 8750	2930 3140 2970	1590 2060 1770	1690 1880 1760
et per sec	(years)	ទ	8	7220 8720 7890	15400 12200 14900	219 180 197	9950 8760 9790	7740 6970 7650	2570 2770 2610	1440 1830 1580	1470 1660 1530
(cubic fe	Recurrence interval (years)	30	3	6570 7560 6960	13500 10900 13100	187 156 170	8410 7550 8310	6640 6000 6580	2220 2390 2250	1300 1610 1410	1250 1450 1310
Peak-discharge (cubic feet per second)	Recurren	10	2	5660 6090 5790	11000 9070 10800	146 123 136	6530 5990 6480	5230 4730 5190	1780 1900 1790	1100 1320 1160	994 1180 1040
Peak		ц	6	4910 4930 4910	9240 7720 9110	118 99 111	5200 4810 5170	4170 3780 4150	1460 1520 1470	951 1100 983	805 977 838
		۲	7	3690 3270 3630	6780 5770 6720	79 66 75	3440 3210 3430	2680 2500 2670	1000 1020 1000	725 777 733	551 682 569
Station	number and	hydrologic	region	04235300 6	04242500 1	04242795 1	04243500 7	04245000 7	04245200 7	04245840 1	04249050 1

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

,	Years of peak-	discharge record Gaged Historic	1	;	;	98	;	:	;	;
	Yea	disch Gage	12	99	7	99	9	11	32	11
	H	Skew	455	332	.629	.275	1.011	.541	.335	295
10 units)	Station record	Standard deviation	.155	.130	.142	.126	.181	.187	.182	.285
stics (log	S	Mean	2.498	3.692	3.761	3.863	3.323	2.165	3.722	2.442
arge stati		Skew	138	190	.516	.319	.674	.265	.273	125
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation	.155	.130	.142	.130	.181	.187	.182	.285
	M	Mean	2.498	3.692	3.761	3.867	3.323	2.165	3.722	2.442
		500	828 1500 1210	10900 15400 12500	18200 18300 18200	19600 25900 20800	9790 6970 9200	580 928 786	20200 10700 18100	1650 1380 1490
(puo		100	696 1190 951	9460 12200 10300	13900 14700 14000	15800 20800 16600	6750 5540 6540	432 726 591	15200 8600 14000	1200 1070 1130
et per sec	Recurrence interval (years)		637 1050 842	8810 10900 9400	12300 13400 12400	14300 18700 15000	5690 4930 5560	376 634 510	13200 7690 12200	1020 931 973
(cubic fe		25	577 914 738	8140 9520 8510	10800 12000 10900	12800 16500 13300	4750 4350 4690	322 542 432	11400 6790 10600	847 795 821
Peak-discharge (cubic feet per second)		10	494 737 591	7170 7750 7290	8890 10100 8960	10900 13900 11200	3660 3600 3650	256 415 323	9110 5610 8670	635 611 625
Peak		ĸ	425 604 484	6340 6400 6350	7510 8590 7550	9420 11900 9620	2920 3040 2930	209 320 248	7450 4720 7190	482 474 479
		2	317 416 341	4960 4480 4900	5600 6370 5620	7250 8920 7350	2010 2220 2020	143 195 156	5170 3450 5060	281 290 283
Station	number and	hydrologic region	042490673 1	04250750 1	04252500 2	04254500 1	04256000 1	04256040 1	04258700b 1	04260575 1

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from log-Pearson type III analyses; middle line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	discharge record Gaged Historic		:	;	1	1	33	1	1	1
	Years (discharg Gaged	i	E	7	10	23	11	23	53	11
		Skew	,	.030	.294	648	.287	1.055	170	.408	.249
10 units)	Station record	Standard deviation	I	.115	.126	.143	.239	.194	.128	.164	.192
stics (log	St	Mean		3.600	3.966	1.741	2.573	2.697	3.657	2.768	2.892
rge statie		Skew		.036	.228	243	.138	.514	120	.242	.100
Peak-discharge statistics (log 10 units)	WRC estimate	Standard deviation		.115	.126	.143	.239	.201	.128	.164	.192
	M	Mean		3.600	3.966	1.741	2.573	2.711	3.657	2.768	2.892
		500		8640 11100 8970	23200 29600 24100	129 175 153	2000 1370 1740	2600 2010 2310	10200 13100 10700	1940 2680 2200	2930 2730 2810
ond)		100		7430 9150 7620	19100 24200 19700	111 137 123	1420 1060 1290	1790 1680 1740	8800 10800 9090	1510 2090 1690	2250 2130 2180
et per sec	(years)	50		6900 8360 7050	17400 22000 17900	104 122 112	1210 927 1110	1500 1540 1520	8180 9860 8400	1340 1840 1490	1980 1870 1920
(cubic fe	e interval	25		6350 7580 6450	15700 19900 16000	95 107 99	1010 803 943	1250 1400 1300	7530 8930 7670	1170 1610 1290	1710 1630 1670
Peak-discharge (cubic feet per second)	Recurrence interval (years)	10		5600 6420 5650	13500 16800 13700	8 8 8	763 642 731	948 1190 1020	6610 7540 6690	959 1300 1030	1380 1310 1350
Peak-c		5		4980 5490 5000	11800 14400 11900	73 68 71	592 520 577	747 1010 803	5840 6450 5870	801 1070 847	1130 1070 1110
		2		3980 4090 3980	9150 10800 9200	56 45 54	369 346 365	494 744 532	4570 4790 4580	577 747 597	774 733 763
Station	number and	hydrologic region		04262500 2	04263000	04263445 2	04264300 1	04264700 2	04265000	04265100 1	04265200

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

Station number and	Peak-	Peak-discharge (cubic feet per second) Recurrence interval (years)	lischarge (cubic feet per : Recurrence interval (years)	t per sec	(puc		M	Peak-discharge statistics (log 10 units) WRC estimate Station reco	arge stati	stics (log	g 10 units) Station record		Years of peak-	f peak-
1	r.	10	25	50	100	200	Mean	Standard deviation	Skew	Mean	Standard deviation	Skew	discharge record	e record Historic
	1850 1890 1860	2420 2320 2390	3260 2900 3120	3970 3340 3720	4750 3810 4360	6940 4930 5990	3.068	.242	.257	3.068	.242	.508	18	;
357 398 361	493 544 501	288 639 600	716 753 726	816 827 819	920 898 911	1180 1070 1130	2.560	.161	.258	2.560	.161	.423	15	;
352 464 372	543 691 580	695 852 743	918 1070 975	1110 1240 1160	1320 1420 1360	1910 1850 1880	2.561	.213	.416	2.561	.213	666.	18	:
1030 1090 1040	1600 1620 1600	2030 1980 2020	2640 2470 2590	3140 2850 3050	3680 3250 3540	5090 4200 4770	3.017	.224	.166	3.017	.224	.297	28	1
745 645 730	1070 952 1050	1310 1160 1270	1630 1450 1570	1900 1670 1820	2170 1900 2080	2900 2470 2730	2.880	.181	.279	2.880	.181	.551	24	;
488 394 472	656 568 635	764 688 742	899 851 882	998 978 990	1100 11110 11110	1330 1440 1380	2.688	.153	025	2.688	.153	090:-	20	:
2390 2650 2420	3290 3620 3350	3900 4270 3980	4700 5150 4820	5320 5840 5470	5950 6570 6140	7490 8300 7780	3.381	.162	.135	3.381	.162	.187	59	:
7320 9020 7410	9860 12200 10000	11600 14300 11900	14000 17200 14400	15900 19400 16400	17900 21800 18500	22800 27500 23600	3.873	.147	.341	3.873	.147	.437	75	;

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

Vears of neak-	discharge record	Gaged Historic		:	21	19 75	58 62	21	21		29
		Skew C		44.7	063	.350	351	105	.175	.486	303
10 units)	Standard	Standard deviation	L		.207	.185	.146	.174	.197	.175	.156
stics (log	S C	Mean d	i	2.716	2.853	3.414	3.195	2.957	2.832	2.058	3.252
arge statis	1	Skew	C L	252	044	.389	121	058	960:	.193	183
Peak-discharge statistics (log 10 units)	WKC estimate	Standard deviation	i	.235	.207	.192	.152	.174	.197	.175	.156
147	M	Mean	ì	2.716	2.853	3.422	3.201	2.957	2.832	2.058	3.252
		200		2090 2170 2120	2750 2750 2750	11600 11200 11400	4130 4770 4230	2790 3250 2990	2650 2690 2670	400 517 461	4640
(puc		100		1660 1690 1670	2130 2110 2120	8360 8780 8530	3480 3920 3540	2260 2490 2350	2020 2060 2040	308 439 370	3930
et per second)	(years)	20	i,	1470 1480 1470	1880 1850 1870	7160 7760 7390	3190 3580 3240	2030 2170 2080	1770 1800 1780	272 405 331	3610
Peak-discharge (cubic feet per a	e interval	25		1280 1270 1280	1630 1590 1620	6050 6780 6320	2890 3240 2920	1810 1870 1830	1530 1550 1540	237 370 286	3270 3160
	Kecurrenc	10		1020 999 1020	1310 1270 1300	4720 5560 4970	2480 2730 2500	1510 1480 1500	1220 1220 1220	193 314 233	2810 2620
		ro	;	825 794 819	1070 1030 1060	3790 4640 3990	2140 2330 2150	1270 1200 1250	994 981 991	160 267 184	2420 2190
		7		532 511 529	716 685 711	2570 3290 2700	1600 1730 1600	909 787 889	675 642 669	113 193 126	1800 1570
Station	number and	hydrologic region		04269050 1	04269100 1	04269500 1	04270000 2	04270100	04270150 1	04270162 2	04270200 2

Footnotes at end of table (p. 107).

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from log-Pearson type III analyses; middle line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

[Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

Station		Peak-	discharge	Peak-discharge (cubic feet per second) Recurrence interval (years)	et per sec	(puo		M	Peak-discharge statistics (log 10 units) WRC estimate Station reco	arge stati	stics (log	g 10 units) Station record		Years of peak-	peak-
hydrologic region	2	rv	10	25		100	200	Mean	Standard deviation	Skew	Mean	Standard deviation	Skew	discharge record	ge record Historic
þ															
04270700 2	2670 2080 2630	3810 2920 3720	4580 3500 4420	5570 4250 5340	6310 4770 5970	7070 5300 6640	8880 6650 8250	3.426	.184	027	3.414	.209	630	28	:
04270800	912 651 859	1270 965 1190	1510 1180 1400	1840 1480 1690	2090 1710 1930	2350 1960 2180	3000 2570 2790	2.965	.166	.169	2.947	.200	549	16	:
04271500 2	3410 3020 3390	4500 4150 4480	5200 4890 5170	6060 5840 6030	6690 6480 6660	7320 7120 7280	8760 8710 8750	3.532	.143	011	3.527	.155	380	41	1
04273500 2	5340 5870 5360	7260 7780 7290	8500 9020 8550	10000 10600 10100	11100 11600 11200	12200 12600 12300	14700 15100 14800	3.725	.161	109	3.719	.157	266	4	09
04273700 2	744 1060 766	1130 1500 1170	1390 1810 1460	1720 2200 1810	1970 2480 2090	2210 2750 2350	2780 3440 2980	2.863	.224	238	2.863	.224	503	56	1
04274000	3280 2460 3250	4610 3290 4540	5550 3830 5400	6810 4520 6580	7790 4980 7430	8810 5440 8330	11400 6600 10600	3.522	.171	.200	3.524	.175	.291	½	75
04275000 2	6210 4630 6160	8990 6510 8880	11000 7830 10800	13700 9620 13300	15800 10900 15200	18100 12300 17400	23800 15800 22600	3.799	.187	.180	3.799	.187	.186	63	:
04275500 2	9780 8040 9720	13500 10900 13400	16200 12900 15900	19900 15400 19500	22800 17200 22100	25900 19000 25000	34000 23800 32400	4.000	.160	.362	3.995	.169	.086	88	1

Table 9. --Selected flood characteristics for gaging stations used in the study. Discharge-frequency relations are presented in the following sequence: top line is computed from the regression equations; bottom line shows a weighted average of the first two discharges (top and middle lines) (continued).

Station locations shown on pl. 2 and names listed in table 8. WRC indicates values computed through U.S. Water Resources Council (1981) guidelines. Dashes(--) indicate no historic data used.]

	Years of peak-	discharge record	Gaged Historic	63			:			;		
	Years	dischar	Caged	53			46			22		
		į	Skew	.722			600			715		
; 10 units)	Station record	Standard	deviation	.177			.200			.167		
stics (log	S		Mean	3.168			3.638			2.993		
rge stati		i	Skew	.700			.242			210		
Peak-discharge statistics (log 10 units)	WRC estimate	Standard	deviation	.182			.169			.167		
	M		Mean	3.169			3.653			2.993		
			200	7020	3930	6170	15400	12500	14800	2700	2130	2510
(puo			100	4810	3110	4410	11900	10000	11600	2270	1760	2120
eet per second)	al (years)		52	4040	2790	3770	10500	9060	10300	2080	1610	1960
	e interval		25	3360	2470	3210	9160	8100	9040	1880	1460	1790
Peak-discharge (cubic f	Recurrence interval (years)		10	2580	2030	2500	7460	6720	7390	1600	1230	1530
Peak-d			2	2050	1690	2020	6200	5650	6170	1360	1040	1320
			7	1410	1200	1400	4430	4070	4410	266	746	926
Station	number and	hydrologic	region	04276200	2		04276500	2		04278300	2	

- Regression and weighted discharges computed from New York full-regression equations. Out-of-State flood-frequency report and relations should be consulted because part or all of the drainage basin lies in an adjacent State. ಹ
- Annual peak-discharge record extended through two-station comparison method (U.S. Water Resources Council,1981) or record was combined with record (adjusted for drainage area) from a nearby gaging station on the same stream (See table 8 for actual or combined years of unregulated gaged record) ۵,
- Station with drainage area lying within two or more hydrologic regions of New York. The regression estimate was obtained by weighting the estimates from the regional equations by the relative percentage of drainage area in each hydrologic region of New York. U
- Station currently on a regulated stream. Peak discharges and statistics reflect preregulation conditions and are not generally applicable to present conditions (See table 8 for period of unregulated record). ס

Table 10. -- Selected basin characteristics for gaging stations used in the study.

Table 10. -- Selected basin characteristics for gaging stations used in the study.

_						
Basin shape index (mi/mi)	4.66 6.53 4.49 5.08 7.57	5.76 2.78 6.20 1.75 3.16	4.98 4.25 2.38 3.09 2.52	5.40 3.82 5.39 3.18 5.46	3.73 2.96 5.09 4.22 4.72	3.00 2.75 4.57 17.75 3.58
Forested area (percent)	70.0 29.0 51.0 19.0 52.0	87.0 87.0 92.0 92.0	90.0 95.0 94.0 91.0	92.0 91.0 22.0 81.0 72.0	86.0 62.0 70.0 79.0 51.0	60.0 82.0 67.0 78.0 85.0
Average channel elevation (ft)	1,200 593 592 976 540	445 2,130 1,925 1,620 1,482	1,145 1,595 1,950 1,780 1,376	1,210 1,130 205 1,140 552	680 960 682 578 372	1,520 1,210 820 1,020 1,720
Mean annual precipitation (in)	40.5 40.0 40.0 41.0	47.0 46.0 43.5 44.5	41.0 45.5 52.0 55.0 46.5	45.0 42.5 37.0 49.0 44.5	39.0 39.5 39.0 37.0	48.0 55.5 49.5 46.0 41.0
Basin storage (percent)	3.57 4.27 7.05 1.04 1.83	2.20 8.81 6.79 7.83	6.30 4.33 6.34 11.45	1.90 4.53 0.07 0.97 2.40	0.01 0.73 7.19 5.62 3.36	1.73 0.22 1.33 1.00 0.45
Main channel slope (ft/mi)	13.00 19.50 19.20 141.00	31.50 63.50 29.20 13.80 24.80	16.40 38.80 93.20 22.70 33.30	15.50 14.90 25.50 62.70 9.20	40.60 143.00 42.30 26.00	188.00 77.40 19.20 33.00 252.00
Main- channel stream length (mi)	11.70 23.00 23.20 3.13 39.80	11.00 23.10 31.50 27.10 50.00	91.00 22.00 8.30 4.70 35.20	75.50 103.10 8.90 22.00 46.40	1.97 2.05 11.50 19.50 3.75	4.80 10.60 24.00 27.50 2.82
Longitude (decimal degrees)	73.391 73.556 73.559 73.620 73.529	73.396 74.130 74.239 74.196 73.984	73.845 74.220 74.518 74.546	73.868 73.747 73.550 73.157 73.430	73.880 74.020 73.930 73.910 73.720	73.113 73.090 73.181 73.197 73.360
Latitude (decimal degrees)	41.942 41.780 41.796 41.710 41.659	41.294 43.970 43.856 43.832 43.701	43.319 43.470 43.251 43.371 43.350	43.311 43.244 43.310 43.077 43.100	43.160 43.060 43.030 43.040 43.000	42.589 42.700 42.706 42.709 42.630
Drainage area (mi²)	29.4 81.0 120 1.93 203	21.0 192 160 419 792	1,664 114 28.9 7.16 491	1,055 2,779 14.7 152 394	1.04 1.42 26.0 90.0 2.98	7.67 40.9 126 42.6 2.22
Hydrologic region	ო ო ო ო ო	0 0 0 0 0 0	11212	00000	00000	00000
State	PZZZZ	r z z z z	ZZZZZ	N N N N N N N N N N N N N N N N N N N	ZZZZZ	MA MA NY
Station Number	01199050 01199400 01199420 01199477 01200000	01208990 01312000 01313500 01314000 01315500	01318500 01319000 01319800 01319950 01321000	01325000 01326500 01328000 01329000 01329500	01329780 01329900 01330000 01330500 01330880	01331400 01332000 01332500 01333000 01333367

Table 10. -- Selected basin characteristics for gaging stations used in the study (continued).

					To (Garant	. , , ,	.) (i ca ca ma				
				Latitude	Longitude	Main- channel	Main channel	Basin	Mean annual	Average channel	Forested	basın shape
Station Number	State	Hydrologic region	Drainage area (mi²)	(decimal degrees)	(decimal degrees)	stream length (mi)	slope (ft/mi)	storage (percent)	precipitation (in)	elevation (ft)	area (percent)	index (mi/mi)
					.							
01333500	Z	2	56.1	42.760	73.340	13.00	118.00	0.34	40.5	890	95.0	3.01
01334000	VT	2	111	42.913	73.257	15.60	125.00	1.05	45.5	1,292	65.0	2.19
01334500	Z	7	510	42.940	73.380	47.50	15.00	1.30	44.0	683	70.0	4.42
01335500	Z	7	4,500	42.912	73.679	1.42	13.70	4.60	42.0	1,273	85.0	4.48
01342730	Ž	ĸ	26.2	43.001	75.046	9.97	102.41	0.95	39.5	932	26.0	3.79
01342800	X	-	193	43.396	74.859	29.00	37.60	5.63	52.0	840	91.0	4.38
01346820	Ž	LC.	1.36	43 010	74.800	2.15	274.00	0.01	39.5	026	23.0	3.30
01347460	Ž	· c	0.54	43 180	74.810	1 27	111 00	0.01	48.0	1.460	95.0	3.04
01348000	Ž	1 0	289	43.020	74.740	33.80	42.70	7.42	49.0	1.120	83.0	3.93
01348420	Ž	1 2	6.52	43.010	74.570	4.02	109.00	3.60	41.0	829	0.99	2.48
		t	ć t	000	t	1	Ė	0	L G	CCO	ć	00 7
01349000	Z	ი	59.7	42.930	74.630	17.00	75.40	0.07	39.5	252	32.0	4.88
01349360	Z	S	1.00	42.900	74.430	1.54	219.00	0.01	39.0	553	20.0	2.30
01349850	Ν	4	13.5	42.290	74.220	8.55	96.70	0.02	41.0	1,980	79.0	5.41
01350000	Ν	4	236	42.320	74.440	28.80	30.30	0.61	46.0	1,514	85.0	3.51
01350120	Z	4	11.1	42.405	74.444	6.90	120.00	1.44	40.0	1,550	38.0	4.29
01350140	Ž	44	163	42 429	74 473	7.46	119.86	0.97	40.5	1 486	38.0	3.41
01350900	Z	777	6.91	42,650	74.130	4.45	71 90	4 20	36.0	1.180	21.0	2.87
01351000	: >	* <	73.0	42.628	74 186	14.50	46.00	3.60	36.0	1 170	28.0	288
01354300	ZZ	* 4	3.20	42.820	74 070	3.03	94.60	5.95	36.5	1,120	47.0	2.48
01355405	Ž	2	3.11	42.890	73.960	2.88	171.00	0.01	37.0	099	20.0	2.67
01358500	Z	ო	89.4	42.730	73.630	18.50	89.20	7.67	40.0	952	0.69	3.83
01359519	Z	4	131	42.679	73.907	27.94	30.06	2.42	36.0	485	28.5	5.96
01359750	Z	က	32.6	42.534	73.737	14.90	29.10	7.98	38.5	332	65.0	6.81
01359902	Z	က	35.1	42.527	73.821	15.04	67.29	0.94	37.0	202	32.0	6.44
01359924	Ž	က	61.6	42.439	73.811	20.98	39.40	5.11	37.0	602	51.0	7.15
01361000	Ž	cr.	329	42 330	73 744	28.00	25.70	4.11	39.5	388	71.0	2.38
01361200	Ž	(1)	9.09	42.215	73.729	17.00	53.60	6.21	39.5	517	51.0	4.77
01361453	Ž	4	3.61	42.530	74.310	3.04	316.00	0.01	38.5	1,610	41.0	2.56
01361500	Z	4	98.0	42.400	74.150	14.30	45.70	1.30	38.5	1,922	71.0	2.09
01361570	Z	4	35.3	42.407	74.135	14.50	93.60	2.27	37.5	1,180	31.0	5.96

Table 10. -- Selected basin characteristics for gaging stations used in the study (continued).

				111.	– ווורווכא, כונ	Mail aic m	Act above	358 15 451.1		V		Bacin
				Latitude	Longitude	channel	channel	Basin	Mean annual	channel	Forested	shape
Station	State	Hydrologic region	Drainage	(decimal	(decimal	stream lenoth (mi)	slope (ft/mi)	storage	precipitation (in)	elevation (ft)	area (percent)	index (mi/mi)
Tagrina	orace	10901	arca (IIII)	acercs)	(caagan	(mm) mgmar	(11)	(managed)			,)
01361900	χ	4	13.9	42.306	74.004	9.70	107.20	0.01	40.5	750	95.0	6.77
01362100	Z	ო	27.5	42.154	73.522	10.10	54.00	2.14	40.0	816	67.0	3.72
01362197	ž	4A	11.4	42.120	74.400	5.63	256.00	0.01	46.0	1,700	0.96	2.78
01362198	Z	4	59.5	42.116	74.389	12.60	82.00	0.10	50.0	2,340	95.0	2.67
01362500	Ž	4	192	42.010	74.270	24.20	50.40	0.29	51.0	1,142	0.96	3.05
01365000	X	4	38.5		74.490	10.00	85.30	0.21	51.0	1,199	95.0	2.60
01345500	ž	7	20.9	41.840	74.540	5.20	153.00	1.05	47.0	1,202	0.06	1.29
01366500	ž	٠ ٦			74.400	23.50	57.60	2.46	48.5	1.142	26.0	5.52
01366650	Ž	' 4	56.7		74.389	18.00	59.30	3.91	44.0	,720	87.0	5.71
01367500	ž	4	378	41.840	74.090	52.70	24.20	4.17	46.0	652	86.0	7.20
01358000	Z	er)	140	41 260	74.550	24.40	14.80	4.30	41.5	522	43.0	4.25
1 01368500	2) (f	50.7	41 340	74 490	17.30	33.50	1.80	42.5	694	61.0	5.01
01369000	ΖŻ) er	086	41.270	74 470	19.80	8.13	7.67	43.0	466	55.0	4.00
01369600	Ž	o «	9.90	41 340	74.360	606	42.00	6.45	43.0	513	50.0	3.79
01370000	Ž	ი	385	41.380	74.410	39.10	6.10	5.50	42.0	495	50.0	3.97
01271000	> >	•	102	41 620	74.290	29.40	21.80	3.25	44.0	580	0 69	8 47
01371500	: > :	ታ ርኅ	711		74.170	05.07	2.12	4 87	42.5	394	50.05	6.75
01371300	:	n (1	17.3		73 931	13.00	16.30	7.33	7.5. 0.04	300	76.0	6 77
013/2040	ZZ	י מ	07.4 4.70		73.764	13.80	34 70	4 80	40.0	980	61.0	2.06
01372300	Ž	က	32.9	41.806	73.794	16.20	12.60	7.58	40.0	328	71.0	7.98
01372500	Z	က	181	41.650	73.870	29.10	12.60	5.74	40.5	284	60.0	4.68
01372800	ž	က	57.3		73.807	20.30	17.40	6.30	42.5	265	0.09	7.19
01373500	ž	m	190	41.510	73.950	30.10	10.70	7.86	43.0	344	59.0	4.77
01373690	Z	က	11.2		74.105	5.10	51.50	6.25	44.5	532	0.99	2.32
01374130	N	က	8.30		73.873	7.64	118.00	66'9	46.0	276	87.0	7.03
01374250	X	က	14.9	41.388	73.813	6.92	82.80	7.45	46.5	540	0.06	3.21
01374440	Z	င	17.3		73.984	8.00	157.00	5.30	44.5	482	47.0	3.70
01374460	Z	ဗ	5.86		74.032	5.70	23.90	11.20	45.0	979	32.0	5.54
01376280	Z	က -	10.7	41.029	73.926	7.00	42.40	3.90	45.0	26	20.0	4.58
01376690	Z	က	6.90		73.957	3.00	57.30	11.20	44.0	701	79.0	1.31

Table 10. -- Selected basin characteristics for gaging stations used in the study (continued).

					- menes, en	Main	Main	Sea icveir		Avorage		Racin
				Latitude	Longitude	channel	channel	Basin	Mean annual	channel	Forested	shape
Station	Ċ	Hydrologic		(decimal	(decimal	stream	slope	storage	precipitation	elevation	area	index
Number	State	region	area (mi²)	degrees)	degrees)	length (mi)	(ft/mi)	(percent)	(III)	(tt)	(percent)	(mi/mi)
01384500	Z	ო	19.1	41.130	74.260	10.20	62.00	7.10	44.0	260	90.0	5.45
01387250	Ž	က	60.1	41.169	74.191	17.70	16.70	8.50	46.0	477	78.0	5.21
01387300	χ	က	18.2	41.162	74.186	6.90	107.00	60.9	46.0	662	97.0	2.62
01387350	X	က	5.40	41.154	74.194	3.35	101.60	9.53	46.0	200	93.0	2.06
01387410	N	က	2.60	41.140	74.160	2.90	248.00	4.89	47.0	099	0.66	3.16
01387450	Ν	ო	12.3	41.140	74.120	6.65	28.30	5.10	45.5	150	36.0	3.60
01387500	Z	က	120	41.100	74.160	22.80	17.20	7.53	46.0	442	77.0	4.41
01387880	Z	က	6.76	41.029	74.237	5.50	27.40	8.80	47.0	313	74.0	4.02
01390500	Z	က	21.6	40.980	74.090	10.00	37.90	4.60	44.0	219	53.0	4.63
01413500	Ž	4A	163	42.140	74.650	19.40	15.20	0.40	44.0	1,422	85.0	2.31
01414000	X	44	35.0	42.130	74.690	11.70	91.50	0.01	43.0	1,658	78.0	3.91
01414500	Ž	4 A	25.2	42.110	74.730	10.50	120.50	0.17	46.0	1,932	93.0	4.37
01415000	Ž	4 A	33.2	42.120	74.820	9.70	60.70	0.95	43.0	1,595	71.0	2.83
01415500	Z	4 A	13.6	42.131	74.900	2.60	114.00	0.14	42.5	1,588	0.66	2.31
01417185	X	4 A	0.41	42.040	74.980	0.90	435.00	0.01	43.0	1,750	100.0	1.98
01417500	Ν	4A	458	42.020	75.120	54.40	9.80	0.26	43.5	1,255	84.0	6.48
01418000	χ	4 A	40.8	42.035	74.732	13.40	65.90	06.0	51.0	2,180	95.0	4.40
01418500	X	4 A	81.9	41.960	74.870	22.30	52.70	0.72	48.5	1,932	0.96	6.07
01419500	Ν	4A	62.6	41.900	74.810	14.20	64.10	1.70	54.0	1,858	0.66	3.22
01420000	X	4 A	20.1	41.870	74.800	8.10	83.80	3.79	49.0	1,760	82.0	3.26
01420500	Ν	4A	241	41.950	74.980	33.20	33.40	1.99	49.5	1,742	94.0	4.57
01421000	Ν	4 A	787	41.970	75.170	62.20	9.30	0.88	45.5	1,225	86.0	4.93
01422000	Z	ഹ	142	42.270	74.920	25.50	21.50	0.40	42.0	1,575	63.0	4.58
01422500	X	ß	49.7	42.250	74.900	14.60	57.60	0.36	42.5	1,720	74.0	4.29
01423000	Ν	ស	332	42.170	75.140	42.60	13.10	0.36	42.0	1,448	67.0	5.47
01423500	Ν	ĸ	8.10	42.120	75.250	5.40	148.00	0.68	42.0	1,535	91.0	3.60
01424000	Σ	ഗ	20.0	42.180	75.280	7.00	117.30	0.28	42.0	1,518	0.69	2.45
01424500	×	n n	49.5	42.100	75.320	13.80 2.00	226.00	0.20	42.0 42.0	1,325	0.87 70.0	3.83
01425675	ZZ	ດເດ	4.69	42.174	75.440	3.55	118.00	2.13	42.0	1,668	77.0	2.69

Table 10. -- Selected basin characteristics for gaging stations used in the study (continued).

Basin shape index (mi/mi)	4.28 9.05 3.28	3.88	7.65 11.22 9.89 8.85 4.75	7.41 3.63 5.91 5.87 3.74	6.31 4.00 5.15 3.23 5.56	2.41 7.46 6.25 3.70 3.53	6.65 6.97 4.45 2.15 9.28
Forested area (percent)	81.0 73.0 62.0	86.0 98.0	96.0 84.0 90.0 86.0	29.0 53.0 14.0 23.0 43.0	33.0 63.0 33.0 25.0 34.0	100.0 42.0 33.0 58.8 27.0	53.0 31.0 41.0 48.0 28.0
Average channel elevation (ft)	1,392 1,260 1,140	1,005 1,500	1,205 1,385 1,225 655 1,440	1,248 1,192 1,540 1,810 1,478	1,246 1,110 1,184 1,324 1,480	1,604 1,352 1,109 1,080 1,540	1,012 1,460 1,318 1,182 1,360
Mean annual precipitation (in)	42.0 42.0 43.0	41.5 57.5	54.0 48.5 47.0 44.5 41.5	42.5 42.0 42.5 42.5 41.5	41.5 41.5 41.5 42.0	41.0 42.0 42.0 41.5 40.0	41.0 40.5 41.0 40.5 41.0
Basin storage (percent)	0.58 0.48 2.61	5.87	1.15 4.68 7.42 1.50	8.00 7.40 1.00 0.27 1.29	1.31 3.77 1.29 0.86 4.45	0.01 1.07 1.33 3.12 1.19	2.64 1.53 6.36 5.24 0.21
Main channel slope (ft/mi)	40.80 9.30 37.90	29.00 70.60	31.00 27.20 28.60 37.60 49.30	12.30 3.00 43.20 148.00 28.30	18.70 3.40 7.50 132.80 130.00	318.00 27.80 4.80 3.68 130.00	3.60 60.70 30.10 14.60 97.80
Main- channel stream length (mi)	17.00 73.40 19.00	13.30	29.40 49.90 55.10 23.80 7.03	27.50 35.60 17.90 4.68 25.00	26.10 62.70 32.00 3.87 3.35	1.30 21.10 57.00 79.63 3.45	121.80 7.09 10.40 23.80 7.40
Longitude (decimal degrees)	75.430 75.390 75.050	75.020 74.590	74.599 74.650 74.600 74.952 75.000	74.960 74.980 74.833 74.800 74.960	75.110 75.320 75.320 75.329 75.220	75.420 75.240 75.410 75.524 75.680	75.800 75.640 75.606 75.510 75.530
Latitude (decimal degrees)	42.060 42.000 41.760	41.560	41.757 41.500 41.440 41.107 42.850	42.500 42.546 42.546 42.630 42.440	42.450 42.320 42.640 42.626 42.710	42.530 42.550 42.380 42.227 42.170	42.040 42.880 42.851 42.680
Drainage area (mi²)	67.6 595 110	45.6	113 223 307 64.0 10.4	102 349 54.2 3.73	108 982 199 4.64 2.02	0.70 59.7 520 1,716 3.37	2,232 7.21 24.3 263 5.80
Hydrologic	ა ა გ 4	4A 4	44460	ന ന ന ന ന	ന ന ന ന ന	ທທູດພູດ	ນ ນ ນ ນ ນ
State	žžž	χχ	ZZZZZ	22222	\$\$\$\$\$	ŽŽŽŽŽ	22252
Station	01426000 01426500 01427500	01428000 01435000	01436500 01437000 01437500 01440000 01496370	01496500 01497500 01497800 01497805	01499000 01500500 01501000 01501015 01501140	01501500 01502000 01502500 01502701 01502714	01503000 01503960 01503980 01505000 01505017

Table 10. -- Selected basin characteristics for gaging stations used in the study (continued).

[Locations shown on pl. 2. mi² = square miles; mi = miles; ft = feet; in. = inches; elevations are in feet above sea level.]

Table 10. -- Selected basin characteristics for gaging stations used in the study (continued).

				III	III. – IIICIIES, EIEVAUOIIS AI	Mein	Jeet above	sea level.				Design
				Latitude	Longitude	Main- channel	channel	Basin	Mean annual	Average channel	Forested	shape
Station	ć	Hydrologic		(decimal	(decimal	stream	slope	storage	precipitation	elevation	area	index
Number	State	region	area (m1²)	degrees)	degrees)	length (m1)	(tt/m1)	(percent)	(II)	(‡ŧ)	(percent)	(m1/m1)
01527000	Z	7	52.2	42.500	77.500	17.40	29.90	3.43	34.0	1,489	31.0	5.80
01528000	Z	9	8.99	42.390	77.360	20.10	12.60	1.08	34.0	1,305	28.0	6.05
01529500	Ž	9	470	42.250	77.220	43.40	10.20	1.76	33.5	1,232	49.0	4.01
01530301	Ž	9	5.39	42.180	76.930	3.70	175.00	0.74	34.0	1,380	70.0	2.54
01530500	Z	9	77.5	42.100	76.800	18.90	45.20	1.70	35.0	1,123	28.0	4.61
01531000	Ϋ́	9	2,506	42.000	76.630	88.50	7.23	1.53	34.5	1,120	43.0	3.13
01531250	PA	9	8.83	41.840	76.827	5.41	46.60	0.01	35.0	1,248	25.0	3.31
01533250	PA	9	11.8	41.710	76.120	5.80	73.30	1.87	38.0	1,084	40.0	2.85
03008000	PA	9	7.79	41.890	78.350	5.70	87.60	0.01	39.0	1,661	52.0	4.17
03010500	PA	9	220	41.960	78.390	47.60	11.20	1.00	39.0	1,620	87.0	4.12
03010800	X	9	198	42.120	78.420	33.50	5.60	1.52	38.5	1,550	62.0	2.67
03011000	X	9	137	42.178	78.694	21.50	17.40	0.93	41.0	1,578	75.0	3.37
03011020	Ž	9	1,608	42.156	78.716	77.50	5.50	0.72	39.5	1,540	68.0	3.74
03011800	ž	9	46.4	41.766	78.719	17.30	35.40	1.47	41.0	1,818	92.0	6.45
03013000	X	9	290	42.170	79.070	28.90	4.20	3.69	42.5	1,302	47.0	2.88
03013800	χ̈́	9	90.6	42.150	79.410	5.72	32.40	0.55	41.0	1,398	42.0	3.71
03015390	PA	9	12.3	41.940	79.640	8.07	50.40	1.54	41.5	1,586	58.0	5.29
04213040	PA	9	2.53	41.940	80.450	2.77	57.50	3.30	38.0	230	51.0	3.03
04213200	PA	9	9.16	42.098	80.076	8.43	54.20	0.00	38.0	973	30.0	7.76
04213490	χ	9	25.1	42.365	78.802	10.00	48.90	2.10	46.0	1,498	37.0	3.98
04213500	ΣX	9	436	42.470	78.940	48.50	22.30	2.20	41.5	1,240	49.0	5.40
04214040	Ν	9	8.32	42.629	79.054	9.90	32.90	1.61	38.0	730	42.0	5.72
04214200	Z	9	37.2	42.684	78.778	13.50	35.10	0.97	40.0	1,004	59.0	4.90
04214250	Z		14.3	42.822	78.803	11.20	34.40	1.09	37.0	754	41.0	8.77
04214400	Z	9	76.9	42.748	78.509	22.10	29.00	3.30	38.5	1,161	37.0	6.35
04214410	Ž	9	14.0	42.740	78.550	8.80	39.40	0.50	39.5	1,190	45.0	5.53
04214500	Z	9	142	42.850	78.760	35.00	18.40	1.93	38.0	883	37.0	8.63
04214980	χ	9	24.0	42.879	78.607	14.30	37.60	0.87	36.5	934	40.0	8.52
04215000	Ž	9	96.4	42.890	78.650	23.70	29.30	0.79	36.0	974	37.0	5.83
04215500	Z	9	135	42.830	78.780	33.00	28.40	0.64	39.0	1,012	54.0	8.07

Table 10. -- Selected basin characteristics for gaging stations used in the study (continued).

					- menes, en	availons are m	leet above	sea levelij				
				Latitude	Longitude	Main- channel	Main channel	Basin	Mean annual	Average channel	Forested	basın shape
Station	ċ	H		(decimal	(decimal	stream	slope	storage	precipitation	elevation	area	index
Number	State	region	area (mi²)	degrees)	degrees)	length (m1)	(tt/m1)	(percent)	(III)	(#£)	(percent)	(m1/m1)
04216400	Ν	9	23.7	42.718	78.322	8.70	89.40	5.00	37.0	1,586	51.0	3.19
04216418	Ž	9	6'92	42.864	78.284	22.59	28.16	2.18	36.5	1,224	58.0	6.64
04216500	Z	9	22.1	42.880	78.160	7.40	28.80	1.68	35.0	1,174	48.0	2.48
04216875	Z	9	1.02	42.940	78.160	1.73	46.20	0.01	33.5	985	27.0	2.93
04217000	X	9	171	43.000	78.190	35.30	16.10	5.57	35.5	1,158	45.0	7.29
04217500	Ν	7	231	43.091	78.454	40.30	18.20	6.89	35.0	945	39.0	7.03
04217700	ž	9	43.6	42.994	78.436	21.20	20.90	7.82	35.0	666	31.0	10.31
04218000	Ž	7	349	43.093	78.635	64.40	10.80	7.92	34.5	836	36.0	11.88
04218518	Z	9	81.6	42.978	78.764	38.30	7.70	3.37	35.0	778	35.0	17.98
04219645	N	9	4.88	43.230	79.020	5.15	15.50	0.20	29.5	330	20.0	5.41
04219738	X	9	2.53	43.210	78.780	4.38	68.50	0.40	30.0	208	7.0	3.34
04219900	Z	9	87.7	43.339	78.349	23.90	7.90	6.30	31.0	424	14.0	6.51
04219922	Ν	7	6.48	43.100	78.150	5.80	21.80	1.85	31.5	752	8.0	5.19
04220150	X	7	157	43.207	78.386	36.10	4.10	13.40	31.5	662	16.0	8.30
04221500	Ν	9	308	42.160	77.980	25.80	22.60	1.27	36.5	1,684	49.0	2.16
04221769	Ν	9	10.7	42.270	78.220	5.98	75.80	4.43	37.0	1,630	33.0	3.34
04222600	Z	9	22.0	42.583	78.238	5.60	14.00	5.00	38.5	1,728	46.0	1.43
04223000	Ν	9	984	42.570	78.050	72.00	8.80	1.12	36.5	1,358	38.0	5.27
04224700	Σ	9	10.0	42.514	77.803	5.90	89.30	0.01	34.5	1,622	71.0	3.48
04224775	Ν	9	88.9	42.536	77.704	22.54	32.05	0.40	33.5	1,059	40.0	5.71
04224807	Ν	9	3.15	42.471	77.672	2.97	170.72	0.32	32.0	1,610	35.0	2.80
04224900	Ν	9	4.22	42.520	77.585	3.40	194.10	3.71	33.5	1,732	38.0	2.74
04225000	Σ	9	152	42.560	77.720	22.70	33.50	0.84	33.0	1,018	55.0	3.39
04226000	ΣX	9	68.3	42.681	77.829	22.10	39.90	0.47	32.5	066	42.0	7.15
04227500	Ν	7	1,424	42.770	77.840	96.40	13.30	1.63	35.5	1,074	52.0	6.53
04229500	Ν	7	1%	42.957	77.589	33.00	8.30	5.63	33.0	260	50.0	5.56
04230380	Z	7	39.1	42.744	78.138	11.50	58.00	0.79	35.0	1,270	33.0	3.38
04230500	Z	۱ ۸	, 500	43.010	77.790	50.00	34.40	5.61	32.0	968	27.0	12.50
04231000	χχ	· ·	130	43.100	77.874	32.60 6.32	11.80	9.16 9.85	30.5 29.5	/82 650	14.0 12.0	8.18

Table 10. -- Selected basin characteristics for gaging stations used in the study (continued).

					Main-	Main			Average		Basin
14	Hydrologic		Latitude (decimal	Longitude (decimal	channel	channel slope	Basin storage	Mean annual precipitation	channel elevation	Forested area	shape index
- 1	region	area (mi²)	degrees)	degrees)	length (m1)	(tt/mi)	(percent)	(uı)	(tt)	(percent)	(mi/mi)
	7	2,467	43.180	77.630	158.50	8.13	3.17	33.5	1,006	41.0	10.18
	7	1.95	43.246	77.445	4.15	37.80	0.51	32.0	391	36.0	8.83
	7	6.74	43.225	77.283	4.87	13.70	2.23	32.5	455	18.0	3.52
	7	1.07	43.210	76.990	1.74	23.00	0.01	35.0	380	56.0	2.83
	7	2.90	43.230	76.710	3.58	16.80	1.03	37.0	392	21.0	4.42
	7	44.4	43.325	76.647	11.60	11.30	89.6	37.5	349	43.0	3.03
	7	28.9	42.623	77.158	9.40	30.50	3.43	32.5	862	39.0	3.06
	7	13.8	42.849	76.892	9.20	21.20	0.65	33.0	290	9.0	6.13
	9	35.2	42.390	76.540	8.40	77.20	2.49	34.5	732	55.0	2.00
	9	86.7	42.427	76.522	11.58	67.17	1.44	34.0	889	42.0	1.55
	9	42.0	42.409	76.454	13.85	96.70	0.91	37.5	1,114	50.0	4.57
	9	20.7	42.488	76.302	11.58	41.36	0.14	40.0	1,302	14.0	6.48
	9	40.3	42.505	76.350	15.15	33.71	0.59	39.5	1,240	20.0	5.70
	9	126	42.450	76.470	31.90	15.90	3.30	39.0	1,122	35.0	8.08
	7	1.36	42.540	76.591	3.25	156.00	1.47	35.0	290	28.0	7.77
	7	1.76	42.911	76.663	3.43	81.60	8.52	35.0	610	10.0	89.9
	7	7.84	42.910	77.370	8.25	37.20	0.01	33.0	945	27.0	89.8
	7	64.2	42.974	77.382	26.50	18.60	1.34	33.0	852	39.0	10.94
	7	0.58	43.050	77.050	1.02	39.20	0.01	32.5	510	7.0	1.79
	7	102	42.958	77.068	42.20	12.50	4.13	33.5	865	34.0	17.46
	7	2.94	43.010	77.020	3.40	19.60	89.0	32.5	530	13.0	3.93
	7	19.0	42.990	76.800	14.10	86.8	3.42	34.0	448	18.0	10.46
	9	106	42.718	76.438	17.50	21.70	2.12	38.0	872	40.0	2.89
	1	188	43.300	75.620	40.80	37.00	12.85	52.0	1,288	76.0	8.85
	-	1.34	43.330	75.530	2.63	08.09	12.70	48.5	1,010	51.0	5.16
	7	113	43.100	75.640	24.20	46.80	2.83	39.5	870	30.0	5.18
		85.5	43.030	76.010	29.80	37.60	3.35	41.0	935	36.0	10.39
	7	32.2	42.934	76.062	13.90	48.00	1.61	41.0	1,018	50.0	0.90
	г,	38.4	43.260	76.003	13.10	13.70	31.56	42.5	481	49.0	4.47
	7	21.7	40,400	070.01	77.77	3.00	77.17	£0.0	#1#	0.00	17.0/

Table 10. -- Selected basin characteristics for gaging stations used in the study (continued).

				111.	- Iliciles, en	Meilous are un	icet above	sea level.j				
				Latitude	Longitude	Main- channel	Main	Basin	Mean annual	Average channel	Forested	basin shape
Station		Hydrologic		(decimal	(decimal	stream	slope	storage	precipitation	elevation	area	index
Number	State	region		degrees)	degrees)	length (mi)	(ft/mi)	(percent)	(in)	(ft)	(percent)	(mi/mi)
042490673	Z	₩	11.2	43.492	76.095	7.22	22.20	12.10	46.0	535	53.0	4.65
04250750	Z	-	128	43.813	76.075	27.40	25.80	5.62	42.5	830	42.0	5.87
04252500	Z	2	304	43.510	75.310	37.10	28.10	8.58	50.0	1,439	0.06	4.53
04254500	Ž	-	363	43.610	75.110	45.00	8.90	11.09	47.5	1,744	88.0	5.58
04256000	Z	~	88.7	43.750	75.330	25.40	38.90	13.16	46.0	1,502	86.0	7.27
04256040	Ν	,- -	1.66	43.760	75.520	3.21	204.00	0.01	44.0	1,540	11.0	6.21
04258700	Z	-	94.8	43.930	75.592	31.50	38.10	10.98	51.5	1,340	63.0	10.47
04260575	Z		4.59	44.080	76.060	3.43	7.77	0.87	36.5	340	14.0	2.56
04262500	Σ	7	244	44.190	75.330	36.00	26.70	12.21	43.5	1,102	88.0	5.31
04263000	Z	2	965	44.600	75.380	128.00	13.20	11.61	40.5	936	0.89	16.84
04263445	N	7	1.56	44.430	75.540	3.82	29.70	1.92	35.5	422	0.66	9.35
04264300	Z		27.0	44.828	75.076	16.40	3.60	31.14	32.0	304	30.0	96.6
04264700	Ν	7	46.3	44.429	75.052	20.50	27.40	11.38	39.0	1,151	0.66	80.6
04265000	X	2	333	44.520	75.200	51.80	25.40	9.90	40.0	1,020	87.0	8.06
04265100	X	-	32.6	44.437	75.214	9.70	8.50	10.00	39.0	579	74.0	2.89
04265200	Ϋ́	Н	30.3	44.484	75.258	15.70	17.00	11.20	38.0	577	50.0	8.13
04265300	ΣX	1	42.4	44.540	75.116	9.80	40.10	1.40	37.0	542	73.0	2.27
04267600	Z	2	18.7	44.494	74.870	8.30	57.80	10.53	39.0	1,200	95.0	3.68
04267700	X	1	16.8	44.653	74.971	10.60	47.20	2.42	36.0	610	82.0	69.9
04267800	Z	~	54.2	44.792	75.033	24.00	8.70	7.97	34.0	330	47.0	10.63
04268200	N	.	43.9	44.879	74.914	21.50	11.60	15.56	33.0	312	51.0	10.53
04268720	ΣX	-	20.0	44.683	74.701	7.40	57.30	12.57	38.0	1,041	87.0	2.74
04268800	Ν	1	171	44.598	74.739	38.50	15.20	21.71	40.0	1,320	77.0	8.67
04269000	X		612	44.860	74.780	98.99	25.60	14.88	38.5	940	76.0	7.29
04269050	Ν	-	16.0	44.802	74.728	12.10	26.50	7.00	35.0	278	22.0	9.15
04269100	X	H	25.7	44.839	74.596	13.10	57.70	2.83	35.0	620	63.0	89.9
04269500	Ž	1	182	44.890	74.690	51.80	30.90	7.94	36.5	844	75.0	14.74
04270000	ΣX	2	132	44.756	74.219	22.80	16.50	9.46	40.0	1,431	0.96	3.94
04270100	Σ	1	32.4	44.947	74.480	15.40	27.60	2.68	33.0	3998	52.0	7.32
04270150	N	1	23.9	44.948	74.464	17.90	53.10	2.72	33.5	285	47.0	13.41

Table 10. -- Selected basin characteristics for gaging stations used in the study (continued).

						Main-	Main			Average		Basin
				Latitude	Longitude	channel	channel	Basin	Mean annual	channel	Forested	shape
Station		Hydrologic	Drainage	(decimal	(decimal	stream	slope	storage	precipitation	elevation	area	index
Number	State	region		degrees)	degrees)	length (mi)	(ft/mi)	(percent)	(in)	(ft)	(percent)	(mi/mi)
04270162	χ	7	7.11	44.787	74.370	3.67	149.00	7.88	36.5	1,180	75.0	1.89
04270200	Ν	7	92.2	44.940	74.557	31.90	45.80	3.63	34.5	743	20.0	11.04
04270700	ΧX	7	107	44.990	74.299	26.90	62.40	2.06	35.0	863	74.0	92.9
04270800	ΧX	-	40.8	44.976	73.664	15.00	52.00	5.95	32.0	758	77.0	5.51
04271500	ΣX	2	247	45.000	73.501	42.40	32.50	5.30	33.0	718	73.0	7.28
	;	(000	00	6	000	9	7	L	8	0	70 77
042/3500	Z	7	2	44.680	73.4/0	05.00	19.40	11.94	55.5	766	90.0	10.01
04273700	Z	2	61.9	44.640	73.495	19.80	54.60	1.81	32.0	899	87.0	6.33
04274000	Ν	2	116	44.311	73.917	19.40	75.70	5.67	42.0	2,209	87.0	3.24
04275000	ΣX	7	198	44.440	73.680	35.00	53.50	1.04	40.5	1,279	94.0	6.19
04275500	X	2	448	44.450	73.640	34.30	56.20	3.12	39.0	1,365	88.0	2.63
0000	7.7	ď	Ċ	7 / 7 7	007.66	14,00	170 10	74.0	0.00	1 500	0 80	27 3
042/6200	Z	7	3/.6	44.164	73.608	14.60	1/3.10	0.7	20.0	7601	20.0	2.07
04276500	Ž	2	275	44.360	73.400	40.20	42.20	3.12	34.0	742	86.0	5.88
04278300	X	2	23.4	43.663	73.604	4.90	250.00	3.58	37.0	1,180	0.96	1.03

Back of cover page is intentionally blank.